• Title/Summary/Keyword: Network분석

Search Result 14,476, Processing Time 0.044 seconds

Comparative Study of Anomaly Detection Accuracy of Intrusion Detection Systems Based on Various Data Preprocessing Techniques (다양한 데이터 전처리 기법 기반 침입탐지 시스템의 이상탐지 정확도 비교 연구)

  • Park, Kyungseon;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.449-456
    • /
    • 2021
  • An intrusion detection system is a technology that detects abnormal behaviors that violate security, and detects abnormal operations and prevents system attacks. Existing intrusion detection systems have been designed using statistical analysis or anomaly detection techniques for traffic patterns, but modern systems generate a variety of traffic different from existing systems due to rapidly growing technologies, so the existing methods have limitations. In order to overcome this limitation, study on intrusion detection methods applying various machine learning techniques is being actively conducted. In this study, a comparative study was conducted on data preprocessing techniques that can improve the accuracy of anomaly detection using NGIDS-DS (Next Generation IDS Database) generated by simulation equipment for traffic in various network environments. Padding and sliding window were used as data preprocessing, and an oversampling technique with Adversarial Auto-Encoder (AAE) was applied to solve the problem of imbalance between the normal data rate and the abnormal data rate. In addition, the performance improvement of detection accuracy was confirmed by using Skip-gram among the Word2Vec techniques that can extract feature vectors of preprocessed sequence data. PCA-SVM and GRU were used as models for comparative experiments, and the experimental results showed better performance when sliding window, skip-gram, AAE, and GRU were applied.

Chest CT Image Patch-Based CNN Classification and Visualization for Predicting Recurrence of Non-Small Cell Lung Cancer Patients (비소세포폐암 환자의 재발 예측을 위한 흉부 CT 영상 패치 기반 CNN 분류 및 시각화)

  • Ma, Serie;Ahn, Gahee;Hong, Helen
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Non-small cell lung cancer (NSCLC) accounts for a high proportion of 85% among all lung cancer and has a significantly higher mortality rate (22.7%) compared to other cancers. Therefore, it is very important to predict the prognosis after surgery in patients with non-small cell lung cancer. In this study, the types of preoperative chest CT image patches for non-small cell lung cancer patients with tumor as a region of interest are diversified into five types according to tumor-related information, and performance of single classifier model, ensemble classifier model with soft-voting method, and ensemble classifier model using 3 input channels for combination of three different patches using pre-trained ResNet and EfficientNet CNN networks are analyzed through misclassification cases and Grad-CAM visualization. As a result of the experiment, the ResNet152 single model and the EfficientNet-b7 single model trained on the peritumoral patch showed accuracy of 87.93% and 81.03%, respectively. In addition, ResNet152 ensemble model using the image, peritumoral, and shape-focused intratumoral patches which were placed in each input channels showed stable performance with an accuracy of 87.93%. Also, EfficientNet-b7 ensemble classifier model with soft-voting method using the image and peritumoral patches showed accuracy of 84.48%.

Improvements in Patch-Based Machine Learning for Analyzing Three-Dimensional Seismic Sequence Data (3차원 탄성파자료의 층서구분을 위한 패치기반 기계학습 방법의 개선)

  • Lee, Donguk;Moon, Hye-Jin;Kim, Chung-Ho;Moon, Seonghoon;Lee, Su Hwan;Jou, Hyeong-Tae
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.2
    • /
    • pp.59-70
    • /
    • 2022
  • Recent studies demonstrate that machine learning has expanded in the field of seismic interpretation. Many convolutional neural networks have been developed for seismic sequence identification, which is important for seismic interpretation. However, expense and time limitations indicate that there is insufficient data available to provide a sufficient dataset to train supervised machine learning programs to identify seismic sequences. In this study, patch division and data augmentation are applied to mitigate this lack of data. Furthermore, to obtain spatial information that could be lost during patch division, an artificial channel is added to the original data to indicate depth. Seismic sequence identification is performed using a U-Net network and the Netherlands F3 block dataset from the dGB Open Seismic Repository, which offers datasets for machine learning, and the predicted results are evaluated. The results show that patch-based U-Net seismic sequence identification is improved by data augmentation and the addition of an artificial channel.

Analyzing Korean Math Word Problem Data Classification Difficulty Level Using the KoEPT Model (KoEPT 기반 한국어 수학 문장제 문제 데이터 분류 난도 분석)

  • Rhim, Sangkyu;Ki, Kyung Seo;Kim, Bugeun;Gweon, Gahgene
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.315-324
    • /
    • 2022
  • In this paper, we propose KoEPT, a Transformer-based generative model for automatic math word problems solving. A math word problem written in human language which describes everyday situations in a mathematical form. Math word problem solving requires an artificial intelligence model to understand the implied logic within the problem. Therefore, it is being studied variously across the world to improve the language understanding ability of artificial intelligence. In the case of the Korean language, studies so far have mainly attempted to solve problems by classifying them into templates, but there is a limitation in that these techniques are difficult to apply to datasets with high classification difficulty. To solve this problem, this paper used the KoEPT model which uses 'expression' tokens and pointer networks. To measure the performance of this model, the classification difficulty scores of IL, CC, and ALG514, which are existing Korean mathematical sentence problem datasets, were measured, and then the performance of KoEPT was evaluated using 5-fold cross-validation. For the Korean datasets used for evaluation, KoEPT obtained the state-of-the-art(SOTA) performance with 99.1% in CC, which is comparable to the existing SOTA performance, and 89.3% and 80.5% in IL and ALG514, respectively. In addition, as a result of evaluation, KoEPT showed a relatively improved performance for datasets with high classification difficulty. Through an ablation study, we uncovered that the use of the 'expression' tokens and pointer networks contributed to KoEPT's state of being less affected by classification difficulty while obtaining good performance.

The Current Status and Needs Analysis of Interprofessional Education in Korean Medical Colleges (한국 의과대학·의학전문대학원의 전문직 간 교육 현황과 요구 분석)

  • Park, Kwi Hwa;Yu, Ji Hye;Yoon, Bo Young;Lee, Dong Hyeon;Lee, Seung Hee;Choi, Jai-jeong;Park, Kyung Hye
    • Korean Medical Education Review
    • /
    • v.24 no.2
    • /
    • pp.141-155
    • /
    • 2022
  • The purpose of this study was to investigate the current status of interprofessional education (IPE) and the efforts required to promote, popularize, and implement it in Korea. The IPE status of 40 medical colleges was investigated using a survey with questions regarding the details of IPE, the future plans and necessary support required, and the reasons for not implementing IPE. Thirty-two medical colleges responded, of which 10 are implementing or have implemented IPE. Most of these colleges started IPE in 2018, and the duration of IPE was less than 9 hours. All medical colleges held classes with nursing students. As for the type of IPE, there were independent courses for IPE, one-time special lectures, or partial sessions in one course. Lectures, discussions and presentations, role playing, and high-fidelity simulations were mainly used as educational methods. The support and interest of the dean was the most important facilitating factor. No medical colleges were currently preparing to implement IPE, four colleges had planned IPE but failed to implement it, and 16 had no plans for IPE at all. All medical colleges cited scheduling or cooperation with other majors as the most significant barrier. All the colleges listed their requirements for educational materials, cases, guidelines, and teaching and learning methods for IPE from external institutions. To activate IPE, it is necessary to create an appropriate atmosphere and conditions for developing IPE competencies and a model suitable for the domestic situation. External medical education support organizations should distribute IPE development guidelines and educational materials, form a network between medical colleges with IPE experience, and make efforts to promote the importance of IPE.

A Comparative Research on End-to-End Clinical Entity and Relation Extraction using Deep Neural Networks: Pipeline vs. Joint Models (심층 신경망을 활용한 진료 기록 문헌에서의 종단형 개체명 및 관계 추출 비교 연구 - 파이프라인 모델과 결합 모델을 중심으로 -)

  • Sung-Pil Choi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.1
    • /
    • pp.93-114
    • /
    • 2023
  • Information extraction can facilitate the intensive analysis of documents by providing semantic triples which consist of named entities and their relations recognized in the texts. However, most of the research so far has been carried out separately for named entity recognition and relation extraction as individual studies, and as a result, the effective performance evaluation of the entire information extraction systems was not performed properly. This paper introduces two models of end-to-end information extraction that can extract various entity names in clinical records and their relationships in the form of semantic triples, namely pipeline and joint models and compares their performances in depth. The pipeline model consists of an entity recognition sub-system based on bidirectional GRU-CRFs and a relation extraction module using multiple encoding scheme, whereas the joint model was implemented with a single bidirectional GRU-CRFs equipped with multi-head labeling method. In the experiments using i2b2/VA 2010, the performance of the pipeline model was 5.5% (F-measure) higher. In addition, through a comparative experiment with existing state-of-the-art systems using large-scale neural language models and manually constructed features, the objective performance level of the end-to-end models implemented in this paper could be identified properly.

Prediction of Music Generation on Time Series Using Bi-LSTM Model (Bi-LSTM 모델을 이용한 음악 생성 시계열 예측)

  • Kwangjin, Kim;Chilwoo, Lee
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.65-75
    • /
    • 2022
  • Deep learning is used as a creative tool that could overcome the limitations of existing analysis models and generate various types of results such as text, image, and music. In this paper, we propose a method necessary to preprocess audio data using the Niko's MIDI Pack sound source file as a data set and to generate music using Bi-LSTM. Based on the generated root note, the hidden layers are composed of multi-layers to create a new note suitable for the musical composition, and an attention mechanism is applied to the output gate of the decoder to apply the weight of the factors that affect the data input from the encoder. Setting variables such as loss function and optimization method are applied as parameters for improving the LSTM model. The proposed model is a multi-channel Bi-LSTM with attention that applies notes pitch generated from separating treble clef and bass clef, length of notes, rests, length of rests, and chords to improve the efficiency and prediction of MIDI deep learning process. The results of the learning generate a sound that matches the development of music scale distinct from noise, and we are aiming to contribute to generating a harmonistic stable music.

Apartment Price Prediction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 아파트 실거래가 예측)

  • Hakhyun Kim;Hwankyu Yoo;Hayoung Oh
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-76
    • /
    • 2023
  • Since the COVID-19 era, the rise in apartment prices has been unconventional. In this uncertain real estate market, price prediction research is very important. In this paper, a model is created to predict the actual transaction price of future apartments after building a vast data set of 870,000 from 2015 to 2020 through data collection and crawling on various real estate sites and collecting as many variables as possible. This study first solved the multicollinearity problem by removing and combining variables. After that, a total of five variable selection algorithms were used to extract meaningful independent variables, such as Forward Selection, Backward Elimination, Stepwise Selection, L1 Regulation, and Principal Component Analysis(PCA). In addition, a total of four machine learning and deep learning algorithms were used for deep neural network(DNN), XGBoost, CatBoost, and Linear Regression to learn the model after hyperparameter optimization and compare predictive power between models. In the additional experiment, the experiment was conducted while changing the number of nodes and layers of the DNN to find the most appropriate number of nodes and layers. In conclusion, as a model with the best performance, the actual transaction price of apartments in 2021 was predicted and compared with the actual data in 2021. Through this, I am confident that machine learning and deep learning will help investors make the right decisions when purchasing homes in various economic situations.

Current Status and Future Plans for Surface Current Observation by HF Radar in the Southern Jeju (제주 남부 HF Radar 표층해류 관측 현황 및 향후계획)

  • Dawoon, Jung;Jae Yeob, Kim;Jae-il, Kwon;Kyu-Min, Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.198-210
    • /
    • 2022
  • The southern strait of Jeju is a divergence point of the Tsushima Warm Current (TWC), and it is the starting point of the thermohaline circulation in the waters of the Korean Peninsula, affecting the size and frequency of marine disasters such as typhoons and tsunamis, and has a very important oceanographic impact, such as becoming a source of harmful organisms and radioactively contaminated water. Therefore, for an immediate response to these maritime disasters, real-time ocean observation is required. However, compared to other straits, in the case of southern Jeju, such wide area marine observations are insufficient. Therefore, in this study, surface current field of the southern strait of Jeju was calculated using High-Frequency radar (HF radar). the large surface current field is calculated, and post-processing and data improvement are carried out through APM (Antenna Pattern Measurement) and FOL (First Order Line), and comparative analysis is conducted using actual data. As a result, the correlation shows improvement of 0.4~0.7 and RMSE of about 1~19 cm/s. These high-frequency radar observation results will help solve domestic issues such as response to typhoons, verification of numerical models, utilization of wide area wave data, and ocean search and rescue in the future through the establishment of an open data network.

The effect of external influence and operational management level on urban water system from water-energy nexus perspective (물-에너지 넥서스 관점에서 외부영향과 운영관리 수준이 도시물순환시스템에 미치는 영향)

  • Choi, Seo Hyung;Shin, Bongwoo;Song, Youngseok;Kim, Dongkyun;Shin, Eunher
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.587-602
    • /
    • 2023
  • Due to climate change, population growth, and economic development, the demand for water in the urban water system (UWS) and the energy required for water use constantly increase. Therefore, beyond the traditional method of considering only the water sector, the Nexus approach, which considers synergies and trade-offs between the water and energy sectors, has begun to draw attention. In previous researches, the Nexus methodology was used to demonstrate that the UWS is an energy-intensive system, analyze the water-energy efficiency relationship surrogated by energy intensity, and identify climate (long-term climate change, drought, type), geographic characteristics (topography, flat ratio, location), system characteristics (total supply water amount, population density, pipeline length), and operational management level (water network pressure, leakage rate, water saving) effects on the UWS. Through this, it was possible to suggest the direction of policies and institutions to UWS managers. However, there was a limit to establishing and implementing specific action plans. This study built the energy intensity matrix of the UWS, quantified the impact of city conditions, external influences, and operational management levels on the UWS using the water-energy Nexus model, and introduced water-energy efficiency criteria. With this, UWS managers will be able to derive strategies and action plans for efficient operation management of the UWS and evaluate suitability and validity after implementation.