• Title/Summary/Keyword: NetFlow[9]

Search Result 121, Processing Time 0.033 seconds

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

Performance analysis of S-CO2 recompression Brayton cycle based on turbomachinery detailed design

  • Zhang, Yuandong;Peng, Minjun;Xia, Genglei;Wang, Ge;Zhou, Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2107-2118
    • /
    • 2020
  • The nuclear reactor coupled with supercritical carbon dioxide (S-CO2) Brayton cycle has good prospects in generation IV reactors. Turbomachineries (turbine and compressor) are important work equipment in circulatory system, whose performances are critical to the efficiency of the energy conversion system. However, the sharp variations of S-CO2 thermophysical properties make turbomachinery performances more complex than that of traditional working fluids. Meanwhile, almost no systematic analysis has considered the effects of turbomachinery efficiency under different conditions. In this paper, an in-house code was developed to realize the geometric design and performance prediction of S-CO2 turbomachinery, and was coupled with systematic code for Brayton cycle characteristics analysis. The models and methodology adopted in calculation code were validated by experimental data. The effects of recompressed fraction, pressure and temperature on S-CO2 recompression Brayton cycle were studied based on detailed design of turbomachinery. The results demonstrate that the recompressed fraction affects the turbomachinery characteristic by changing the mass flow and effects the system performance eventually. By contrast, the turbomachinery efficiency is insensitive to variation in pressure and temperature due to almost constant mass flow. In addition, the S-CO2 thermophysical properties and the position of minimum temperature difference are significant influential factors of cyclic performance.

Estimating the Stock Value of Woraksan National Park Using Turnbull Distribution-Free Model (Turnbull 분포무관모형을 이용한 월악산국립공원의 자산가치 평가)

  • Han, Sang-Yoel
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.283-289
    • /
    • 2007
  • Benefit-cost analysis is a useful tool for organizing information on the relative value of alternative public investments like national park preservation projects. When the value of all significant benefits and costs can be expressed in monetary terms, the net value (benefits minus costs) of the alternatives under consideration can be computed and used to identify the alternative that yields the greatest increase in public welfare. However, since goods and services of national parks are not commonly bought or sold in the marketplace, it can be difficult to express the outputs of a national park preservation project in monetary terms. In this case the dichotomous choice contingent valuation is employed to elicit the public benefit value. In this paper, a distribution-free approach, Turnbull empirical distribution model, is employed to analysis the benefit value of Woraksan National Park. The result is shown that annual use and preservation values of Woraksan National Park are estimated 6.5 and l37.4 billion won. Also, flow and stock values are estimated 143.9 and 3,021.7 billion won, respectively.

The Effects of Depreciation Methods on Investment Motivation for Solar Photovoltaic Systems (태양광 설비투자에 대한 제도적 유인방안 연구: 감가상각법의 경제적 효과 분석)

  • Kim, Kyung Nam
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.65-75
    • /
    • 2020
  • The value of tangible assets depreciates over their useful life and this depreciation should be adequately reflected in any tax or financial reports. However, the method used to calculate depreciation can impact the financial performance of solar projects due to the time value of money. Korean tax law stipulates only one method for calculating the depreciation of solar photovoltaic facilities: the straight-line method. Conversely, USA's tax law accepts other depreciation methods as solar incentives, including the modified accelerated cost recovery system (MACRS) and Bonus depreciation method. This paper compares different depreciation methods in the financial analysis of a 10 MW solar system to determine their effect on the financial results. When depreciation was calculated utilizing the MACRS and Bonus depreciation method, the internal rate of return (IRR) was 10.9% and 16.4% higher, respectively, than when the Korean straight-line depreciation method was used. Additionally, the increased IRR resulting from the use of the two US methods resulted in a 20.5% and 27.4% higher net present value, respectively. This shows that changing the depreciation calculation method can redistribute the tax amount during the project period, thereby increasing the discounted cash flow of the solar project. In addition to increasing profitability, USA's depreciation methods alleviate the uncertainty of solar projects and provide more flexibility in project financing than the Korean method. These results strongly suggest that Korean tax law could greatly benefit from adopting USA's depreciation methods as an effective incentive scheme.

A Study on Strategic Groups of Program Providers(PP) and the Performance in Korea (국내 방송채널사용사업자(PP)의 전략집단과 성과에 관한 연구)

  • Ryo, Hyon-Chol;Kim, Jai-Beom;Lee, Sahang-Shik
    • Korean journal of communication and information
    • /
    • v.46
    • /
    • pp.387-419
    • /
    • 2009
  • The concept of strategic group is defined as an aggregate of corporations utilizing similar strategies with similar resources. It becomes a kinds of contact point in the middle of corporation and industry between the industrial organization theory and the strategic management theory. This study tried to apply the strategic group model, which has been a main theory in the management studies, to program providing industry in Korea. This study shed lights upon research problems such as number of strategic groups, differences of strategic variables among the groups, finally differential performances according to strategic groups. 40 commercial broadcasting companies were analyzed to find answers. 9 strategic groups were drawn as a result of cluster analysis. Major variables which contribute to making groups were operating efficiency(4.05), pricing(3.83), size(number of system operator, 3.56), reliance on license revenue(2.58), horizontal integration(number of sister networks, 2.16) in order. An analysis of variance between performance variables has shown statistical significance regarding total net revenue per subscriber, however, insignificances statistically in regards to ratio of operating profit to net sales, cash Abstracts 687 flow ratio. Some studies in the past insisted that history variable played an important role to classifying strategic groups. However, this study found that the history didn't exert significant influence on either the group classification itself or performance.

  • PDF

A Study on Partial Admission Characteristics of a Multi-Stage Small-Scaled Turbine (다단 소형 터빈에서의 부분분사 특성에 관한 연구)

  • Cho, Chong-Hyun;Jeong, Woo-Chun;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.943-954
    • /
    • 2010
  • In this study, a radial inflow type turbine was applied and the outer diameter of the turbine rotor was 108 mm. The turbine blade on a circular plate disc was designed as an axial-type because its partial admission rate was 1.4-4.1%. The turbine consisted of three stages. The performance test has been conducted with various admission rates, tip clearances and nozzle flow angles. The turbine output power was measured on each stage. The turbine performance was obtained in a wide rotational speed range in order to compare its performance according to various operating conditions. The net specific output torque was also measured to compare its overall performance. Computational analysis was conducted for predicting turbine performance. The computed results were in good agreement with the experimental results.

Small Turbojet Engine Test and Uncertainty Analysis (소형 터보제트 엔진 시험 및 불확도 분석)

  • Jun, Yong-Min;Yang, In-Young;Nam, Sam-Sik;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.118-126
    • /
    • 2002
  • The Altitude Engine Test Facility(AETF) was built at the Korea Aerospace Research Institute and has been being operated for the gas turbine engines in the class of 3,000 lbf thrust. To enhance the confidence level of AETF to the international level, a series of studies and facility modification have been conducted to improve the measurement uncertainty and reliability. In this paper, some part of the facility evaluation tests performed with a single spool turbojet engine are introduced. Tests were performed simulating the flight conditions as steady state, sea level for various flight speeds (i.e., Mn=0.3, 0.5, 0.7, 0.9). The obtained test results are compared with the predicted values of the engine DECK. The measurement uncertainties of airflow, net thrust, fuel flow and SFC showed 0.791~0.914%, 0.851~1.706%, 1.372~7.348% and 1.642~5.205%, respectively. Thus, from this research, the improvement methods of uncertainties on AETF has been confirmed.

Groundwater Flow Model of Igsan Area (익산 지역의 지하수 유동 모델)

  • Hamm, Se Yeong;Kim, Youn Ki
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.381-393
    • /
    • 1989
  • Hydrogeological modelling was performed to evaluate groundwater flow system in Igsan Area. The study area extends over $790km^2$. The geology consists of Jurassic Daebo granite and gneissose granite and Precambrian metamorphic rocks. The capability of pumping yield is the highest in gneissose granite region among them due to comparatively thick weathered zone with thickness ranging from 10m to 25m. The Colorado State University Finite Difference Model was used for the model simulation. The model was divided into 28 rows and 31 columns with variable grid spacing. The model was calibrated under steady-state and unsteady-state conditions. In the steady-state simulation, the model results were compared with measured water table contours in September 1985 with determining hydraulic conductivities and net recharge rates during rainy season. Unsteady state simulation was done to know the aquifer response due to groundwater abstraction. The non- steady state calibration was conducted to determine the distribution and magnitudes of specific yields and discharge/recharge rates during dry season as matching water level altitudes in May 1986. The calibrated model was used to simulate water level vaiation caused by groundwater withdrawal and natural recharge from 1 October, 1985 until 30 September, 1995. The calibrated model can be used to groundwater development schemes on regional groundwater levels, but it cannot be used to simulate local groundwater level change at a specific site.

  • PDF

Influence of methionine supplementation of growing diets enriched with lysine on feedlot performance and characteristics of digestion in Holstein steer calves

  • Torrentera, Noemi;Carrasco, Ramses;Salinas-Chavira, Jaime;Plascencia, Alejandro;Zinn, Richard A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.42-50
    • /
    • 2017
  • Objective: Two trials were conducted in order to examine the effects of level of supplemental methionine on productive performance, dietary energetic, plasma amino acid concentration, and digestive function. Methods: Dietary treatments consisted of a steam-flaked corn-based diet containing urea as the only source of supplemental nitrogen supplemented with no supplemental amino acid (control), or control plus 1.01% lysine and 0.032%, 0.064%, 0.096%, or 0.128% methionine. In Trial 1, 150 Holstein steer calves ($127{\pm}4.9kg$) were utilized to evaluate the influence of treatments on growth-performance, dietary energetic, plasma amino acid concentration during the first 112 days of growing period. During the initial 56-d period calves received the 5 experimental diets. During the subsequent 56-d period all calves were fed the control diet. Results: During the initial 56-d period, methionine supplementation increased (linear effect, p<0.01) plasma methionine. In the presence of supplemental lysine, increases on level of methionine in diet did not affect average daily gain. However, increased gain efficiency (quadratic effect, p = 0.03) and estimated dietary net energy (NE; linear effect, p = 0.05). Estimated metabolizable methionine supply was closely associated ($R^2=0.95$) with efficiency NE utilization for maintenance and gain. During the subsequent 56-d period, when all calves received the control diet (no amino acid supplementation), plasma amino acid concentrations and growth performance was not different among groups. However, the effects of methionine supplementation during the initial 56-period carried over, so that following a 56-d withdrawal of supplementation, the overall 112-d effects on gain efficiency (quadratic effect, p = 0.05) dietary NE (linear effect, $p{\leq}0.05$) remained appreciable. In Trial 2, 5 cannulated Holstein steers were used to evaluate treatment effects on characteristics of digestion and amino acid supply to the small intestine. There were no treatment effects on flow of dietary and microbial N to the small intestine. Postruminal N digestion increased (p = 0.04) with increasing level of supplemental methionine. Methionine supplementation linearly increased (p<0.01) duodenal flow of methionine. Likewise, lysine supplementation increased an average of 4.6% (p = 0.04) duodenal flow of lysine. In steers that received non-supplemented diet, observed intestinal amino acid supply were in good agreement with expected. Conclusion: We conclude that addition of rumen-protected methionine and lysine to diets may enhance gain efficiency and dietary energetics of growing Holstein calves. Observed amino acid supply to the small intestine were in good agreement with expected, supportive of NRC (2000, Level 1).

Flow Resistance and Modeling Rule of Fishing Nets -1. Analysis of Flow Resistance and Its Examination by Data on Plane Nettings- (그물어구의 유수저항과 근형수칙 -1. 유수저항의 해석 및 평면 그물감의 자료에 의한 검토-)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.183-193
    • /
    • 1995
  • Assuming that fishing nets are porous structures to suck water into their mouth and then filtrate water out of them, the flow resistance N of nets with wall area S under the velicity v was taken by $R=kSv^2$, and the coefficient k was derived as $$k=c\;Re^{-m}(\frac{S_n}{S_m})n(\frac{S_n}{S})$$ where $R_e$ is the Reynolds' number, $S_m$ the area of net mouth, $S_n$ the total area of net projected to the plane perpendicular to the water flow. Then, the propriety of the above equation and the values of c, m and n were investigated by the experimental results on plane nettings carried out hitherto. The value of c and m were fixed respectively by $240(kg\cdot sec^2/m^4)$ and 0.1 when the representative size on $R_e$ was taken by the ratio k of the volume of bars to the area of meshes, i. e., $$\lambda={\frac{\pi\;d^2}{21\;sin\;2\varphi}$$ where d is the diameter of bars, 21 the mesh size, and 2n the angle between two adjacent bars. The value of n was larger than 1.0 as 1.2 because the wakes occurring at the knots and bars increased the resistance by obstructing the filtration of water through the meshes. In case in which the influence of $R_e$ was negligible, the value of $cR_e\;^{-m}$ became a constant distinguished by the regions of the attack angle $ \theta$ of nettings to the water flow, i. e., 100$(kg\cdot sec^2/m^4)\;in\;45^{\circ}<\theta \leq90^{\circ}\;and\;100(S_m/S)^{0.6}\;(kg\cdot sec^2/m^4)\;in\;0^{\circ}<\theta \leq45^{\circ}$. Thus, the coefficient $k(kg\cdot sec^2/m^4)$ of plane nettings could be obtained by utilizing the above values with $S_m\;and\;S_n$ given respectively by $$S_m=S\;sin\theta$$ and $$S_n=\frac{d}{I}\;\cdot\;\frac{\sqrt{1-cos^2\varphi cos^2\theta}} {sin\varphi\;cos\varphi} \cdot S$$ But, on the occasion of $\theta=0^{\circ}$ k was decided by the roughness of netting surface and so expressed as $$k=9(\frac{d}{I\;cos\varphi})^{0.8}$$ In these results, however, the values of c and m were regarded to be not sufficiently exact because they were obtained from insufficient data and the actual nets had no use for k at $\theta=0^{\circ}$. Therefore, the exact expression of $k(kg\cdotsec^2/m^4)$, for actual nets could De made in the case of no influence of $R_e$ as follows; $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})\;.\;for\;45^{\circ}<\theta \leq90^{\circ}$$, $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}\;.\;for\;0^{\circ}<\theta \leq45^{\circ}$$

  • PDF