• Title/Summary/Keyword: Nerve regeneration

Search Result 169, Processing Time 0.026 seconds

Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

  • Chung, Joo-Ryun;Choi, Jong-Won;Fiorellini, Joseph P.;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • Background: For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Method: In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results: The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusion: Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.

Effect of Gyehyuldeung Treatments in Peripheral Nerve Regeneration of Rat (계혈등(鷄血藤)이 Rat의 말초신경 재생에 미치는 효과)

  • Lim, Seung-Min;Ahn, Jung-Jo;Jo, Hyun-Kyung;Yoo, Ho-Ryong;Kim, Yoon-Sik;Seol, In-Chan
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.375-387
    • /
    • 2009
  • Objective : Gyehyuldeung (GHD) has been widely used in oriental medicine for the treatments of cardiovascular and neurological disorders. Thus, its potential facilitatory activity on axonal regeneration was investigated in the rats. Methods: Sprague-Dawley rats were given crush injury at the sciatic nerve and the changes of axon growth after nerve injury on each nerve injury model were investigated with anti-NF-200 antibody, DiI, GAP-43 protein and Cdc2 protein Results : GHD-mediated enhancement of axonal regeneration after crush injury was measured in both qualitative and quantitative ways by immunofluorescence staining with anti-NF-200 antibody and retrograde tracing of fluorescence dye DiI. GAP-43 protein levels were elevated by GHD treatments in the distal injured sciatic nerve and DRG sensory neurons. The neurite outgrowth of DRG sensory neurons was facilitated by GHD treatment when co-cultured with Schwann cells and astrocytes prepared from injured sciatic nerves and injured spinal cord tissues, respectively. It was observed that Cdc2 protein was up-regulated in co-cultured Schwann cells or astrocytes and Cdc2 protein signals were co-localized to a certain extent with those of phospho-vimentin protein. Conclusions : These results suggest that GHD may play a facilitatory role in axonal regeneration by acting on the injured axons and adjacent non-neuronal cells. The current findings may be useful for the development of therapeutic targets through more specific explorations on molecular interactions between herbal components and endogenous factors.

  • PDF

Facilitated Axonal Regeneration of Injured Sciatic Nerves by Yukmijihwang-tang Treatment

  • Kim, Jung-Hyun;Seol, In-Chan;Ryu, Ho-Ryong;Jo, Hyun-Kyung;An, Joung-Jo;Namgung, Uk;Kim, Yoon-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.896-902
    • /
    • 2008
  • Yukmijihwang-tang(YM) is used in Oriental medicine for treatments of diverse systemic symptoms including neurological dosorders. The present study was performed to examine potential effects of YM on growth-promoting activity of injured sciatic nerve axons. YM treatment in the injured sciatic nerve induced enhanced distal elongation of injured axons when measured 3 and 7 days after injury. Retrograde tracing of sciatic nerve axons showed YM-mediated increases in the number of DiI-labeled dorsal root ganglion (DRG) sensory neurons and spinal cord motor neurons at 3 days after injury. Hoechst nuclear staining showed that non-neuronal cell population was largely elevated by YM treatment in distal nerve area undergoing axonal regeneration. Furthermore, phospho-Erk1/2 protein levels were upregulated by YM treatment in the injured nerve area. These data suggest that YM may play a role in facilitated axonal regeneration in injured peripheral nerves. Further investigations of individual herbal components would be useful to explore effective molecular components and develop therapeutic strategies.

Preparation and Release Profile of N8f-loaded Polylactide Scaffolds for Tissue Engineered Nerve Regeneration (조직공학적 신경재생을 위한 NGF를 함유한 PLA 담체의 제조 및 방출)

  • 전은경;황혜진;강길선;이일우;이종문
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.893-901
    • /
    • 2001
  • We developed the nerve growth factor (NGF) loaded poly (L - lactide) (PLA) scaffolds by means of emulsion freeze drying method to the possibility for the application of the nerve regeneration of spinal cord disease and the degeneration in Alzheimer's disease. The release amount of NGF from NGF loaded PLA scaffold were analyzed over a 4 week period in vitro at phosphate buffered saline (PBS), pH 7.4, at $37^{\circ}C$. It can be observed the open cell pore structure of porous scaffolds and can be easily controlled the pore structure by the controlling of formulation factors resulting in the controlling of the release rate and the release period. The stability of NGF during the preparation of PLA scaffold was evaluated by comparing the released amounts of total NGF, assayed NGF enzyme - linked immunosorbent assay (ELISA). Released NGF has been found to enhance the neurite sprouting and outgrowth from pheochromocytoma (PC-12) cells. These results suggest that the released NGF from NGF loaded PLA scaffold such as conduit type can be very useful for the nerve regeneration in the neural tissue engineering area.

  • PDF

The Effects of c-Fos Expression on Ultrasound Treatment in Sciatic Nerve Crush Damaged Rats (초음파 치료가 좌골신경 압좌 손상된 흰쥐의 c-Fos 발현에 미치는 영향)

  • Kim, Dong-Dae
    • Journal of Korean Physical Therapy Science
    • /
    • v.14 no.1_4
    • /
    • pp.11-23
    • /
    • 2007
  • This study was performed to evaluate the effects of low-intensity ultrasound application to the peripheral nerve injury animal model on enhancement of nerve regeneration and functional recovery. Using aseptic microsurgical techniques, the sciatic nerve of adult male Sprague-Dawley rats was crushed at the outside of right mid-thigh for 30 seconds with fine forceps. Beginning just after surgery, various continuous-wave ultrasound treatments with intensities of 0.2 W/$cm^2$, 0.5 W /$cm^2$ and 1.0 W /$cm^2$ operated at 1 MHz or sham treatment were applied to the opposite inside of the crush site for 1 minute every other day with a transducer moving speed of 2cm/sec. For evaluation of the progress of sciatic nerve regeneration, c-Fos expression in the lumbar spinal cord (L4-5) dorsal horn was investigated. c-fos expression was markedly increased at 1hour after sciatic nerve crush injury, then gradually decreased thereafter. The c-fos expressions were significantly decreased (p<0.05) in all the experimental groups in comparison with the control group until 3days post-crush, and the degrees of decrease were higher in 0.5 W/$cm^2$ and 1 W/$cm^2$ intensity ultrasound application groups. It is suggested that low-intensity ultrasound application to an animal model of sciatic crush injury may suppress pain transmission and promote nerve regeneration, and which may result in delayed progress of muscle atrophy and accelerated progress of muscle recovery and eventually may result in accelerated and improved foot function recovery.

  • PDF

AN EXPERIMENTAL STUDY ON TISSUE REACTIONS OF ALLOGENEIC SCIATIC NERVE GRAFT IN RAT (백서 좌골신경의 동종이식후 조직반응에 관한 실험적 연구)

  • Chung, Hyung-Bai;Yim, Chang-Joon;Lee, Dong-Keun;Se, Jae-Deok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.13 no.2
    • /
    • pp.203-216
    • /
    • 1991
  • Nerve allografts as a bridge of regeneration is useful in the repair of peripheral nerve defect resulting from trauma, and leprosy. But immunological rejection and complicated scar formation is an unavoidable problem in the application of allogeneic nerves. This article is intended to study of the regeneration of allogeneic nerve grafts in rats with histopathologically, scanning electron microscopically. 24 adult male Sprague-Dawley rats were used as the experimental animals. A 2cm skin incision was made on the lateral aspects of limb, parallel to femur. Segments of sciatic nerve trunk taken from rats, 10mm was resected at the middle of the thigh, nerve graft was inserted between the ends of gaps with perineural and epineural suture method with 10-0 prolene. Obsrevation was made simultaneously at 3 day, 1, 2, 3, 4, 5, 6, 8 weeks after surgery. The results were as follows. 1. In light and electronic microscopic studies, marked degenerative change of the graft nerves were observed at 2 weeks after surgery. 2. After surgery, blood clot fromation was observed at 3 day, granualtion tissue formation was observed at 2 week, and fibrous tissue proliferation was observed at 3 week. 3. In change of nerve fiber, there were Wallerian degeneration at early stage, decrease in degeneration at 4 week but degeneration of myeline was continuded at 8 week. 4. At 4 week, schwann cells proliferate at its cut ends to join with the distal and proximal stump of the damaged nerve. 5. Fibrous scar tissues are formed at 2 weeks and increased progressively in 8 weeks, which was interrupted the regeneration of grafted nerve.

  • PDF

XENOTRANSPLANT OF HUMAN BONE MARROW STROMAL CELLS; EFFECT ON THE REGENERATION OF AXOTOMIZED INFRAORBITAL NERVE IN RATS (인간 골수 기질세포 이종이식이 백서의 축삭절단 안와하 신경 재생에 미치는 효과)

  • Park, Eun-Jin;Kim, Eun-Seok;Kim, Jin-Man;Kim, Hyun-Ok;Yum, Kwang-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.3
    • /
    • pp.239-247
    • /
    • 2005
  • This study demonstrated that xenogenic human marrow mesenchymal stem cells (hMSCs) could elicit the regeneration of the sensory nerve after axotomy in the adult rats infraorbital nerves without immunosuppression. For this, we evaluated the behavioral testing for functional recovery of the nerve and histological findings at weeks 3 and 5 compared to controls. Xenogenic hMSCs did not evoke any significant inflammatory or immunologic reaction after systemic and local administrations. HMSCs-treated rats exhibited significant improvement on sensory recovery tested with von Frey monofilaments. At 5 postoperative weeks, in the hMSCs treated nerve, expression of myelin basic protein (MBP), neurofilament (NF) at the site of axotomy was higher than control. And mRNA expression of neurotropin receptor Trk precursor (TrkPre), nerve growth factor receptor (NGFR) and neuropeptide (NPY) in trigeminal ganglion were also higher. The number of myelinated nerve at distal stump and cells in trigeminal ganglion were higher in hMSC treated rats. So it was supposed that transplanted MSCs contributed to reducing post-traumatic degeneration and production of neurotrophic factors. Immunofluorescence labeling showed small portion of hMSCs (<10%) expressed a phenotypic marker of Schwann cell (S-100). Xenogenic or allogenic mesenchymal stem cells might have immune privileged characteristics and useful tool for cell based nerve repair.

Epigenetic Regulation of Axon Regeneration after Neural Injury

  • Shin, Jung Eun;Cho, Yongcheol
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.10-16
    • /
    • 2017
  • When peripheral axons are damaged, neuronal injury signaling pathways induce transcriptional changes that support axon regeneration and consequent functional recovery. The recent development of bioinformatics techniques has allowed for the identification of many of the regeneration-associated genes that are regulated by neural injury, yet it remains unclear how global changes in transcriptome are coordinated. In this article, we review recent studies on the epigenetic mechanisms orchestrating changes in gene expression in response to nerve injury. We highlight the importance of epigenetic mechanisms in discriminating efficient axon regeneration in the peripheral nervous system and very limited axon regrowth in the central nervous system and discuss the therapeutic potential of targeting epigenetic regulators to improve neural recovery.

The effects of Exercise and Low-Power Laser on the Changes of CMAP and Histologic factor in Peripheral Nerve Injured Rats (운동과 저출력 레이저가 말초신경손상 흰쥐의 CAMP와 조직학적 변화에 미치는 영향)

  • Ha, Mi-Sook;Baek, Il-Hun;Lee, Hyun-Ok;Kim, Sun-Yueb;Rho, Min-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.12 no.4
    • /
    • pp.43-55
    • /
    • 2005
  • This study was performed to investigate the effects of low-power Helium Neon Infra Red(He-Ne IR)laser irradiation and exercise on the regeneration of experimentally cut sciatic nerve in rats. The thrity Sprague-Dawley adult mail rats were assigned to the 6 groups : normal group(1), injured control groups(2), experimental groups(3). There was made artificial injured in the sciatic nerve of rats the each experimental laser group and exercise group were treated from 3 days after being injured for the 5 minutes(laser group), 10 minutes(exercise group), and 15 minutes(exercise and laser group) everyday during 2 weeks. There were measured the changes of amplitude of compound muscle action potential and histological change by the light microscopy on the sciatic nerve injured rats. The results obtained as follows : 1. In the control groups, the regeneration were slowly and slightlly progressed to compared with the experimental groups. Inflammation were much more observed, and fibrous adhesion was also observed around the sutured region of the cut sciatic nerve. 2. The amplitude of compound muscle action potential in the experimental groups were significantly increased to the injured control groups at 1 week(p<.05). The compound muscle action potential of the exercise and lased group was significantly decreased to be similar to normal group at 2 weeks(p<.05). 3. In histologic finding, in the experimental groups were observed the proliferation of the schwann cells, the infiltration of inflammatory cells and the extent of destruction at adjacent tissue were remarkably decreased on the 2 weeks. From these experimental results, it may be suggested that the laser and exercise were effected the heeling process of peripheral nerve injuried rats.

  • PDF

Effects of Aqueous Extract of Achyranthes Japonica on Functional Recovery in Sciatic Nerve after Crushed Sciatic Nerve Injury in Rats (우슬 추출물이 흰쥐 좌골신경 손상 후 좌골신경의 기능회복에 미치는 영향)

  • Lee, Ma-Seong;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.143-158
    • /
    • 2011
  • Objectives : Peripheral nerve injuries are commonly encountered clinical problem and often result in severe functional deficits. The aim of this study is to evaluate the effects of aqueous extract of Achyranthes japonica(AJ) on functional recovery in sciatic nerve after crushed sciatic nerve injury. Methods : In the present study, the animals in the AJ-treated groups received the aqueous extract of AJ at the respective doses orally for 13 consecutive days. In order to assess the effects of the aqueous extract of AJ on function recovery in crushed sciatic nerve injury, sciatic functional index(SFI) was performed. c-Fos expression in the paraventricular nucleus(PVN) and ventrolateral periaqueductal gray(vIPAG), and neurofilament, and the expressions of brain-derived neurotrophic factor(BDNF), nerve growth factor(NGF) following crushed sciatic nerve injury in rats were investigated. For this, immunohistochemistry and western blot were performed. Results : In the present study, crushed sciatic nerve injury showed characteristic gait changes showing decrease of SFI value and treatment with the aqueous extract of AJ significantly enhanced the SFI value. Neurofilament expression in the sciatic nerve was decreased by crushed sciatic nerve injury and treatment with the AJ increased neurofilament expression. The expressions of BDNF and NGF in the sciatic nerve were increased following crushed sciatic nerve injury and treatment with the AJ significantly controlled the sciatic nerve injury-induced increment of BDNF and NGF expressions. c-Fos expressions in the PVN and vIPAG were increased following crushed sciatic nerve injury and treatment with the AJ significantly suppressed the sciatic nerve injury-induced increment of c-Fos expressions. Conclusions : These results suggest that AJ treatment after crushed sciatic nerve injury is effective in the functional recovery by enhancing axonal regeneration and suppressing of pain.