• Title/Summary/Keyword: Nerve Cell

Search Result 554, Processing Time 0.033 seconds

Cochlear Implant of the Hair-Cell Damaged Cats (모세포 손상 가묘에 대한 Cochlear Implant)

  • 장인원;김성남;양한모;최윤호;조용범
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1978.06a
    • /
    • pp.9.1-10
    • /
    • 1978
  • Recently the authors have observed various wave-forms by insertion of induction coil into the scala tympani as well as attached outer device in the outside of the body in damaged hair cells of the cats. In the cochlear nerve. action potential indicated different polarities induced by examination of the bundle of the cochlear nerve fibers. Impulse wave-form as a result of excitation of cohlear nerve fibers showed bipolar wave-form such as negative 1 and positive 1. Therefore action potential showed also bipolar wave-form as above mentioned. We can obtained suitable response with above mentioned outer and inner device as an exact oscillogram.

  • PDF

Effects on Response of Nervous Tissue to Samuljetong-tang after Damaged by Taxol Treatment or Sciatic Nerve Injury (사물제통탕(四物除痛湯)이 Taxol 처리 및 좌골신경 압좌 손상 후 신경조직 변화에 미치는 영향)

  • Youn, Sung-Sik;Kim, Chul-Jung;Cho, Chung-Sik
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.2
    • /
    • pp.126-144
    • /
    • 2012
  • Background : Peripheral nerves more rapidly recover than central nerves. However, it has been known that the degree of reaction of axons of peripheral nerves is affected by distinctive characteristics of axons and environmental factors near the axons. Taxol is a widely used medicine as for ovarian, breast, lung and gastric cancer. However it causes patients difficulties under treatment due to its toxic and side effects, which include persistent pain. Objectives : This study reviewed how SJT extract in vitro and in vivo affects nerve tissues of a sciatic nerve damaged by Taxol. It also studied how SJT extract in vivo affects axons of the sciatic nerve after the sciatic nerve was damaged by pressing. Methods : After vehicle, Taxol, and Taxol plus SJT were treated respectively for tissue of the sciatic nerve in vitro and then tissues were observed using Neurofilament 200, Hoechst, ${\beta}$-tubulin, $S100{\beta}$, caspase-3 and anti-cdc2. SJT was also oral medicated by injecting Taxol into the sciatic nerve of in vivo rats. Tissues of the sciatic nerve and axons of DRG sensory nerves were then observed using Neurofilament 200, Hoechst, ${\beta}$-tubulin, $S100{\beta}$, caspase-3 and p-Erk1/2. After inflicting pressing damage to the sciatic nerve of in vivo rats, tissues of the sciatic nerve and DRG sensory nerve were observed using Neurofilament 200, Hoechst, $S100{\beta}$, caspase-3, anti-cdc2, phospho-vimentin, ${\beta}1$-integrin, Dil reverse tracking and p-Erk1/2. Results : The group of in vitro Taxol plus SJT treatment had meaningful effects after sciatic nerve tissue was damaged by Taxol. The group of in vivo SJT treatment had effects of regenerating Schwann cells and axons which were damaged by Taxol treatment. The group of in vivo SJT had effects of regenerating axons in damaged areas after the sciatic nerve was damaged by pressing, and also had variations of distribution in Schwann cells at DRG sensory nerves and axons. Conclusions : This study confirmed that SJT treatment is effective for growth of axons in the sciatic nerve tissues and improvement of Schwann cells after axons of the sciatic nerve tissues was damaged. After tissues of sciatic nerve was damaged by pressing in vivo, SJT treatment had effects on promoting regeneration of axon in the damaged area and reactional capabilities in axons of DRG sensory nerves.

Role of cyclic AMP in the eye with glaucoma

  • Shim, Myoung Sup;Kim, Keun-Young;Ju, Won-Kyu
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.60-70
    • /
    • 2017
  • Glaucoma is characterized by a slow and progressive degeneration of the optic nerve, including retinal ganglion cell (RGC) axons in the optic nerve head (ONH), leading to visual impairment. Despite its high prevalence, the biological basis of glaucoma pathogenesis still is not yet fully understood, and the factors contributing to its progression are currently not well characterized. Intraocular pressure (IOP) is the only modifiable risk factor, and reduction of IOP is the standard treatment for glaucoma. However, lowering IOP itself is not always effective for preserving visual function in patients with primary open-angle glaucoma. The second messenger cyclic adenosine 3',5'-monophosphate (cAMP) regulates numerous biological processes in the central nervous system including the retina and the optic nerve. Although recent studies revealed that cAMP generated by adenylyl cyclases (ACs) is important in regulating aqueous humor dynamics in ocular tissues, such as the ciliary body and trabecular meshwork, as well as cell death and growth in the retina and optic nerve, the functional role and significance of cAMP in glaucoma remain to be elucidated. In this review, we will discuss the functional role of cAMP in aqueous humor dynamics and IOP regulation, and review the current medications, which are related to the cAMP signaling pathway, for glaucoma treatment. Also, we will further focus on cAMP signaling in RGC growth and regeneration by soluble AC as well as ONH astrocytes by transmembrane ACs to understand its potential role in the pathogenesis of glaucoma neurodegeneration.

T Lymphocyte Subsets and Cytokines in Rats Transplanted with Adipose-Derived Mesenchymal Stem Cells and Acellular Nerve for Repairing the Nerve Defects

  • Jiang, Liang-fu;Chen, Ou;Chu, Ting-gang;Ding, Jian;Yu, Qing
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Objective : The aim of this study was to explore the immunity in rats transplanted with adipose-derived mesenchymal stem cells (ADSCs) and acellular nerve (ACN) for repairing sciatic nerve defects. Methods : ADSCs were isolated from the adipose tissues of Wistar rats. Sprague-Dawley rats were used to establish a sciatic nerve defect model and then divided into four groups, according to the following methods : Group A, allogenic nerve graft; Group B, allograft with ACN; Group C, allograft ADSCs+ACN, and Group D, nerve autograft. Results : At the day before transplantation and 3, 7, 14, and 28 days after transplantation, orbital venous blood of the Sprague-Dawley rats in each group was collected to detect the proportion of $CD3^+$, $CD4^+$, and $CD8^+$ subsets using flow cytometry and to determine the serum concentration of interleukin-2 (IL-2), tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and $interferon-{\gamma}$ ($IFN-{\gamma}$) using enzyme-linked immunosorbent assay (ELISA). At each postoperative time point, the proportion of $CD3^+$, $CD4^+$, and $CD8^+$ subsets and the serum concentration of IL-2, $TNF-{\alpha}$, and $IFN-{\gamma}$ in group C were all near to those in group B and group D, in which no statistically significant difference was observed. As compared with group A, the proportion of $CD3^+$, $CD4^+$, and $CD8^+$ subsets and the serum concentration of IL-2, $TNF-{\alpha}$, and $IFN-{\gamma}$ were significantly reduced in group C (p<0.05). Conclusion : The artificial nerve established with ADSCs and ACN has no obvious allograft rejection for repairing rat nerve defects.

Effects of Longterm Acupuncture on the Endocrine Cells and Mucus of Gastric Mucosa In Rats (족삼리 장기 자극이 흰쥐 위점막의 내분비세포 및 점액에 미치는 영향)

  • Jang Kyung Hoon;Kim Myong Dong;Lee Chang Hyeon;Yu Yun Cho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1276-1280
    • /
    • 2003
  • To investigate the effect of acupuncture at Zushanli (ST 36) in this study, gastric endocrine cells (G cell) by avidin-biotinylated complex (ABC) technique and histological examinations (HE; periodic acid schiff, PAS; alcian blue stain) of the stomach were perfomed at 1, 3, 6 weeks in normal rats. In other groups, omeprazole were fed for 1, 3, 6 weeks to compare with acupuncture effect. Acupuncture applied to the ST 36 acupoint and the administration of omeprazole increased G cell significantly at 1, 3, 6 weeks in time dependant manner. Furthermore, acupuncture applied to the other acupoint on GB 34 did not produce significant effect. When the common peronial nerve was dissected, acupuncture of ST 36 acupoint produced change of G cell. These data suggest that acupuncture at ST 36 increased G cell in point specific way and that effect was not related with surrounding nerve.

Protective Effect of Gastrodia Elata on Neuronal Cell Damage in Alzheimer's Disease (치매병태(癡呆病態)모델에서 천마(天麻)의 신경세포(神經細胞) 손상(損傷) 보호효과(保護效果))

  • Jung, Young-Su;Kang, Jae-Hyun;Prak, Se-Hwan;Kwon, Young-Mi;Kim, Geun-Woo;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.21 no.2
    • /
    • pp.125-140
    • /
    • 2010
  • Objectives : The purpose of this study is to examine from various angles the protective effect of Gastrodia elata Blume (GEB) against nerve cell death induced by $\beta$-amyloid by using the cell line SH-SY5Y, which is commonly utilized for toxicity testing in nerve cells, and to find out its mechanism of action. Methods : To begin with, as a result of assessing the rate of cell survival by employing MTT reduction assay, the treatment with $\beta$-amyloid at different concentrations caused cytotoxicity, which was inhibited by preprocessing GEB extract. In addition, after $\beta$-amyloid was processed with the cell SH-SY5Y, apoptosis progressed, which was reduced effectively by processing GEB extract. Results : When cytotoxicity was caused by using hydrogen peroxide, a representative ROS, in order to examine the antioxidant effect of GEB, its protective effect was also observed. Apart from ROS, reactive nitrogen species (RNS) are also known to play a crucial role in nerve cell death. The treatment with the NO donor SNAP increased the production of nitric oxide and the expression of iNOS, which was also inhibited by GEB extract. Meanwhile, as an attempt to find out the mechanism of action explaining the antioxidant effect, the intracellular antioxidant enzyme expressions were measured by RT-PCR, which showed that GEB extract increased the expressions of heme oxygenase-1, GAPDH and $\gamma$-glutamate cysteine ligase. Lastly, GEB extract had a protective effect against impaired memory induced by scopolamine in animal models (in vivo). Conclusions : These findings indicate that GEB has a protective effect against the death of cranial nerve cells, suggesting possibilities for the prevention and treatment of AD.

CONSTRUCTION OF HNGF-$\beta$ RECOMBINANT ADENOVIRUS & SCREENING OF ITS EXPRESSION AFTER TRANSFECTION INTO VARIOUS CELL LINES (말초신경재생을 위한 hNGF-$\beta$ recombinant Adenovirus의 제작 및 수종세포주에서 신경성장인자의 발현)

  • Gao, En-Feng;Chung, Hun-Jong;Ahn, Kang-Min;Kim, Yoon-Tae;Park, Hee-Jung;Sung, Mi-Ae;Kim, Nam-Yeol;Yoo, Sang-Bae;Myoung, Hoon;Hwang, Soon-Jung;Kim, Myung-Jin;Kim, Sung-Min;Jang, Jeong-Won;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.5
    • /
    • pp.446-456
    • /
    • 2005
  • Nerve growth factor(NGF) has a critical role in peripheral nerve regeneration. The aim of this study is to construct a well-functioning hNGF-$\beta$ recombinat adenovirus for the ultimate development of improved method to promote peripheral nerve regeneration with adenovirus mediated hNGF-$\beta$ gene transfection into Schwann cells. First PCR associated cloning of GFP-tagged hNGF-$\beta$ which was ligated into E1/E3 deleted adenoviral vector was performed and tranfected into E. coli to construct hNGF-$\beta$ recombinant adenovirus. After production of recombinat adenovirus in a large scale, its transfection efficiency, expression, and function were evaluated using cell lines or primarily cultured cells of HEK293 cells, Schwann cells, fibroblast(NIH3T3) and myocyte(CRH cells). GFP expression was observed in 90% of infected cells compared to uninfected cells. Total mRNA isolated from hNGF-$\beta$ recombinat adenoviru infected cells showed strong RT-PCR band, however, LacZ recombinant adenovirus infected or uninfected cells did not. NGF quantification by ELISA showed a maximal release of 18.865 +/- 0.31ng/mL at 4th day. PC-12 cells exposed to media with hNGF-$\beta$ recombinant adenovirus infected Schwann cell demonstrated higher levels of differentiation compared with controls. We generated hNGF-$\beta$ recombinant adenovirus and induced over expression of NGF successfully in nonneuronal and neuronal cells. Following these result, it is expected to develop an improved treatment strategy peripheral nerve regeneration using the hNGF-$\beta$ gene transfected cells.

Immuno-Electron Microscopic Studies on the Localization of Serotonin and Somatostatin in the Optic Lobes of Cephalopods (Todarodes pacificus and Octopus minor) Inhabiting the Korean Waters (한국 연근해산 두족류 (Todarodes pacificus and Octopus minor) 시엽 (Optic lobe)내 Serotonin 및 Somatostatin의 분포에 관한 면역전자현미경적 연구)

  • Chang, Nam-Sub;Han, Jong-Min;Kim, Sang-Won;Lee, Kwang-Ju;Hwang, Sun-Jong;Lee, Jung-Chan
    • Applied Microscopy
    • /
    • v.32 no.3
    • /
    • pp.247-255
    • /
    • 2002
  • In this study, we carried out immunostaining and immunogold labeling with antibodies to serotonin and somatostatin to examine the characteristics and functions of the neurons that secrete neurotransmitters in optic lobes of Todarodes pacificus and Octopus minor. As a result of immunostaining with anti-somatostatin, the nerve cells of Todarodes pacificus reacted as similar to the anti-serotonin, but in Octopus minor, only large cells in the outer granule cell layer reacted positively. In the immunogold labeling with anti-serotonin, the nerve cells in the inner grande cell layer and medulla of Todarodes pacificus reacted strongly, 30 gold particles being labeled per $0.5{\mu}m^2$ of the cytoplasm. However, in Octopus minor, only 17 gold particles were labeled, which stated a weak reaction. On the other hand, in the anti-somatostatin case, the nerve cells in the outer and inner granule cell layers and medulla of Todarodes pacificus showed strong reaction, 30 gold particles being labeled per $0.5{\mu}m^2$ of the cytoplasm while the nerve cells in the outer granule cell layer of Octopus minor reacted weakly, about 3 gold particles being labeled per the equivalent area. As a result of immunostaining and immunogold labeling with two types of antibodies to each part of the optic lobes, we found that the reactive nerve cells were distributed differently in the two species. In particular, the degree of reactivity to the immunostaining and immunogold labeling appeared stronger in Todarodes pacificus than in Octopus minor.

The Effect of Transplantation of Schwann Cell and SIS Sponge on the Injured Peripheral Nerve Regeneration (슈반세포와 SIS 스폰지의 이식이 손상된 말초 신경 재생에 미치는 영향)

  • Kim, Cho-Min;Kim, Soon-Hee;Kim, Su-Mi;Park, Sang-Wook;Lee, Il-Woo;Kim, Moon-Suk;Rhee, John-M.;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • It is recognized that Schwann cells (SC) are essential for peripheral nerve development and regeneration. SIS (small intestinal submucosa) consists of some growth factors which can stimulate cell activity without immune rejection responges. SCs were harvested from the femurs and tibias of female Fischer rat and then suspended with $2{\times}10^6$ cell/sponge in SIS sponge. Fischer rat received an implant consisting of the SCs and the SIS sponge at the place of a 5 mm gap created by the sciatic nerve resection. Thin sections were stained with H &E staining and immunostaining of S-100, GFAP and NF after 1, 2, and 4 weeks. It was observed that the effects of the SIS sponge with SCs on neuroinduction(Group II, with scaffold & cell) are strong as much as uninjured model(Control I), and significantly stronger than SIS sponge model (Group 1, with scaffold only) and blank model (Control II). In conclusion, these results suggest that SIS sponge filled with SCs may have an important role for peripheral nerve regeneration of tissue engineering.

Morphological Studies on the Localization of Neurons Projecting to the Meridian Points Related to the Facial Nerve Paralysis in the Rat Using the Neural Tracers (신경추적자(神經追跡子)를 이용한 얼굴신경마비(神經痲痺)와 관련(關聯)된 혈(穴)들을 지배(支配)하는 신경세포체(神經細胞體)의 표식부위(標識部位)에 대(對)한 형태학적(形態學的) 연구(硏究))

  • Kim, Jum-Young;Lee, Sang-Ryoung;Lee, Chang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.58-71
    • /
    • 1997
  • In order to the location and local arrangement of nerve cell bodies and nerve fibers projecting to the meridian points related to facial nerve paralysis in the rat using the neural tracers, CTB and WGA-HRP, labeled neurons the were investigated by immunohistochemical and HRP histochemical methods following injection of 2.5% WGA-HRP and 1% CTB into Hyopko$(S_6)$. Chichang$(S_4)$, Sugu$(GV_{26})$, Sajukkong$(TE_{23})$ and Yangbaek$(G_{14})$. Following injection of Hyopko$(S_6)$, Chichang$(S_4)$, labeled motor neurons were founded in facial nucleus, trigeminal motor nucleus, reticular nucleus and hypoglossal nucleus. labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in mesencephalic trigeminal tract, sensory root of trigeminal nerve, oral, interpolar and caudal part of trigeminal nucleus, area postrema, nucleus tractus solitarius, lateral reticular nucleus and $C_{1-2}$ spinal ganglia. Following injection of Sugu$(GV_{26})$, labeled motor neurons were founded in facial nucleus. Labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. Sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in spinal trigeminal tract, trigeminal motor nucleus, mesencephalic trigeminal tract, oral. interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius, lateral reticular nucleus, dorsal part of reticular part and $C_{1-2}$ spinal ganglia. Following injection of Sajukkong$(TE_{23})$ and Yangbaek$(G_{14})$, labeled motor neurons were founded in facial nucleus, trigeminal motor nucleus. Labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in oral, interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius, inferior olovary nucleus, medullary reticular field and lamina I-IV of $C_{1-2}$ spinal cord. Location of nerve cell body and nerve fibers projecting to the meridian points related to the facial nerve paralysis in the rats were found in facial nucleus and trigeminal motor nucleus. Sensory neurone were found in trigeminal ganglia and $C_{1-2}$ spinal ganglia. Sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in mesencephalic trigeminal tract, oral, interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius. lateral reticular nucleus, medullary reticular field.

  • PDF