DOI QR코드

DOI QR Code

Role of cyclic AMP in the eye with glaucoma

  • Shim, Myoung Sup (Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego) ;
  • Kim, Keun-Young (Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego) ;
  • Ju, Won-Kyu (Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego)
  • Received : 2016.12.01
  • Published : 2017.02.28

Abstract

Glaucoma is characterized by a slow and progressive degeneration of the optic nerve, including retinal ganglion cell (RGC) axons in the optic nerve head (ONH), leading to visual impairment. Despite its high prevalence, the biological basis of glaucoma pathogenesis still is not yet fully understood, and the factors contributing to its progression are currently not well characterized. Intraocular pressure (IOP) is the only modifiable risk factor, and reduction of IOP is the standard treatment for glaucoma. However, lowering IOP itself is not always effective for preserving visual function in patients with primary open-angle glaucoma. The second messenger cyclic adenosine 3',5'-monophosphate (cAMP) regulates numerous biological processes in the central nervous system including the retina and the optic nerve. Although recent studies revealed that cAMP generated by adenylyl cyclases (ACs) is important in regulating aqueous humor dynamics in ocular tissues, such as the ciliary body and trabecular meshwork, as well as cell death and growth in the retina and optic nerve, the functional role and significance of cAMP in glaucoma remain to be elucidated. In this review, we will discuss the functional role of cAMP in aqueous humor dynamics and IOP regulation, and review the current medications, which are related to the cAMP signaling pathway, for glaucoma treatment. Also, we will further focus on cAMP signaling in RGC growth and regeneration by soluble AC as well as ONH astrocytes by transmembrane ACs to understand its potential role in the pathogenesis of glaucoma neurodegeneration.

Keywords

References

  1. Weinreb RN and Khaw PT (2004) Primary open-angle glaucoma. Lancet 363, 1711-1720 https://doi.org/10.1016/S0140-6736(04)16257-0
  2. Zhang K, Zhang L and Weinreb RN (2012) Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma. Nat Rev Drug Discov 11, 541-559 https://doi.org/10.1038/nrd3745
  3. Weinreb RN, Leung CK and Crowston JG et al (2016) Primary open-angle glaucoma. Nat Rev Dis Primers 2, 16067 https://doi.org/10.1038/nrdp.2016.67
  4. Rall TW and Sutherland EW (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem 232, 1065-1076
  5. Huneycutt BS and Benveniste EN (1995) Regulation of astrocyte cell biology by the cAMP/protein kinase A signaling pathway. Adv Neuroimmunol 5, 261-269 https://doi.org/10.1016/0960-5428(95)00022-T
  6. Ladilov Y and Appukuttan A (2014) Role of soluble adenylyl cyclase in cell death and growth. Biochim Biophys Acta 1842, 2646-2655 https://doi.org/10.1016/j.bbadis.2014.06.034
  7. Martinez J, Stessin AM and Campana A et al (2014) Soluble adenylyl cyclase is necessary and sufficient to overcome the block of axonal growth by myelinassociated factors. J Neurosci 34, 9281-9289 https://doi.org/10.1523/JNEUROSCI.1434-14.2014
  8. Insel PA, Zhang L, Murray F, Yokouchi H and Zambon AC (2012) Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol (Oxf) 204, 277-287 https://doi.org/10.1111/j.1748-1716.2011.02273.x
  9. Walsh DA, Perkins JP and Krebs EG (1968) An adenosine 3',5'-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem 243, 3763-3765
  10. Taylor SS, Zhang P, Steichen JM, Keshwani MM and Kornev AP (2013) PKA: lessons learned after twenty years. Biochim Biophys Acta 1834, 1271-1278 https://doi.org/10.1016/j.bbapap.2013.03.007
  11. de Rooij J, Zwartkruis FJ, Verheijen MH et al (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474-477 https://doi.org/10.1038/24884
  12. Kawasaki H, Springett GM, Mochizuki N et al (1998) A family of cAMP-binding proteins that directly activate Rap1. Science (New York, N.Y.) 282, 2275- 2279 https://doi.org/10.1126/science.282.5397.2275
  13. Kaupp UB and Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82, 769-824 https://doi.org/10.1152/physrev.00008.2002
  14. Matulef K and Zagotta WN (2003) Cyclic nucleotidegated ion channels. Annu Rev Cell Dev Biol 19, 23-44 https://doi.org/10.1146/annurev.cellbio.19.110701.154854
  15. Sunahara RK, Dessauer CW and Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36, 461-480 https://doi.org/10.1146/annurev.pa.36.040196.002333
  16. Patel TB, Du Z, Pierre S, Cartin L and Scholich K (2001) Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene 269, 13-25 https://doi.org/10.1016/S0378-1119(01)00448-6
  17. Buck J, Sinclair ML, Schapal L, Cann MJ and Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci U S A 96, 79-84 https://doi.org/10.1073/pnas.96.1.79
  18. Hanoune J and Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41, 145-174 https://doi.org/10.1146/annurev.pharmtox.41.1.145
  19. Defer N, Best-Belpomme M and Hanoune J (2000) Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol Renal Physiol 279, F400-416 https://doi.org/10.1152/ajprenal.2000.279.3.F400
  20. Tang WJ and Gilman AG (1992) Adenylyl cyclases. Cell 70, 869-872 https://doi.org/10.1016/0092-8674(92)90236-6
  21. Cooper DM (2003) Regulation and organization of adenylyl cyclases and cAMP. Biochem J 375, 517-529 https://doi.org/10.1042/bj20031061
  22. Valsecchi F, Ramos-Espiritu LS, Buck J, Levin LR, and Manfredi G (2013) cAMP and mitochondria. Physiology (Bethesda, Md.) 28, 199-209
  23. Pierre S, Eschenhagen T, Geisslinger G and Scholich K (2009) Capturing adenylyl cyclases as potential drug targets. Nat Rev Drug Discov 8, 321-335 https://doi.org/10.1038/nrd2827
  24. Lee YS, Marmorstein LY and Marmorstein AD (2014) Soluble adenylyl cyclase in the eye. Biochim Biophys Acta 1842, 2579-2583 https://doi.org/10.1016/j.bbadis.2014.07.032
  25. Caprioli J and Sears M (1983) Forskolin lowers intraocular pressure in rabbits, monkeys, and man. Lancet 1, 958-960
  26. Burstein NL, Sears ML and Mead A (1984) Aqueous flow in human eyes is reduced by forskolin, a potent adenylate cyclase activator. Exp Eye Res 39, 745-749 https://doi.org/10.1016/0014-4835(84)90073-3
  27. Majeed M, Nagabhushanam K, Natarajan S, Vaidyanathan P, Karri SK and Jose JA (2015) Efficacy and safety of 1% forskolin eye drops in open angle glaucoma - An open label study. Saudi J Ophthalmol 29, 197-200 https://doi.org/10.1016/j.sjopt.2015.02.003
  28. Weinreb RN, Aung T and Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311, 1901-1911 https://doi.org/10.1001/jama.2014.3192
  29. Corredor RG, Trakhtenberg EF, Pita-Thomas W, Jin X, Hu Y and Goldberg JL (2012) Soluble adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth. J Neurosci 32, 7734-7744 https://doi.org/10.1523/JNEUROSCI.5288-11.2012
  30. Hellstrom M and Harvey AR (2014) Cyclic AMP and the regeneration of retinal ganglion cell axons. Int J Biochem Cell Biol 56, 66-73 https://doi.org/10.1016/j.biocel.2014.04.018
  31. Cueva Vargas JL, Belforte N and Di Polo A (2016) The glial cell modulator ibudilast attenuates neuroinflammation and enhances retinal ganglion cell viability in glaucoma through protein kinase A signaling. Neurobiol Dis 93, 156-171 https://doi.org/10.1016/j.nbd.2016.05.002
  32. de Lima S, Habboub G and Benowitz LI (2012) Combinatorial therapy stimulates long-distance regeneration, target reinnervation, and partial recovery of vision after optic nerve injury in mice. Int Rev Neurobiol 106, 153-172
  33. Tamm ER (2009) The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res 88, 648-655 https://doi.org/10.1016/j.exer.2009.02.007
  34. Alm A and Nilsson SF (2009) Uveoscleral outflow--a review. Exp Eye Res 88, 760-768 https://doi.org/10.1016/j.exer.2008.12.012
  35. Crowston JG and Weinreb RN (2005) Glaucoma medication and aqueous humor dynamics. Curr Opin Ophthalmol 16, 94-100 https://doi.org/10.1097/01.icu.0000156136.20570.eb
  36. Grant WM (1955) Physiological and pharmacological influences upon intraocular pressure. Pharmacol Rev 7, 143-182
  37. Lee PF (1958) The influence of epinephrine and phenylephrine on intraocular pressure. AMA Arch Ophthalmol 60, 863-867 https://doi.org/10.1001/archopht.1958.00940080883006
  38. Ericson LA (1958) Twenty-four hourly variations in the inflow of the aqueous humour. Acta Ophthalmol (Copenh) 36, xxx
  39. Neufeld AH, Jampol LM and Sears ML (1972) Cyclic-AMP in the aqueous humor: the effects of adrenergic agents. Exp Eye Res 14, 242-250 https://doi.org/10.1016/0014-4835(72)90009-7
  40. Realini T (2011) A history of glaucoma pharmacology. Optom Vis Sci 88, 36-38 https://doi.org/10.1097/OPX.0b013e3182058ead
  41. Katz IM, Hubbard WA, Getson AJ and Gould AL (1976) Intraocular pressure decrease in normal volunteers following timolol ophthalmic solution. Invest Ophthalmol 15, 489-492
  42. Zimmerman TJ and Boger WP 3rd (1979) The betaadrenergic blocking agents and the treatment of glaucoma. Surv Ophthalmol 23, 347-362 https://doi.org/10.1016/0039-6257(79)90228-5
  43. Neufeld AH and Page ED (1977) In vitro determination of the ability of drugs to bind to adrenergic receptors. Invest Ophthalmol Vis Sci 16, 1118-1124
  44. Bromberg BB, Gregory DS and Sears ML (1980) Betaadrenergic receptors in ciliary processes of the rabbit. Invest Ophthalmol Vis Sci 19, 203-207
  45. Nathanson JA (1980) Adrenergic regulation of intraocular pressure: identification of beta 2-adrenergic-stimulated adenylate cyclase in ciliary process epithelium. Proc Natl Acad Sci U S A 77, 7420-7424 https://doi.org/10.1073/pnas.77.12.7420
  46. Caprioli J and Sears M (1984) The adenylate cyclase receptor complex and aqueous humor formation. Yale J Biol Med 57, 283-300
  47. Eakins KE and Eakins HM (1964) Adrenergic mechanisms and the outflow of aqueous humor from the rabbit eye. J Pharmacol Exp Ther 144, 60-65
  48. Neufeld AH and Sears ML (1974) Cyclic-AMP in ocular tissues of the rabbit, monkey, and human. Invest Ophthalmol 13, 475-477
  49. Gregory D, Sears M, Bausher L, Mishima H and Mead A (1981) Intraocular pressure and aqueous flow are decreased by cholera toxin. Invest Ophthalmol Vis Sci 20, 371-381
  50. Ross RA and Drance SM (1970) Effects of topically applied isoproterenol on aqueous dynamics in man. Arch Ophthalmol 83, 39-46 https://doi.org/10.1001/archopht.1970.00990030041007
  51. Sears M and Mead A (1983) A major pathway for the regulation of intraocular pressure. Int Ophthalmol 6, 201-212 https://doi.org/10.1007/BF00141129
  52. Arthur S and Cantor LB (2011) Update on the role of alpha-agonists in glaucoma management. Exp Eye Res 93, 271-283 https://doi.org/10.1016/j.exer.2011.04.002
  53. Gharagozloo NZ, Relf SJ and Brubaker RF (1988) Aqueous flow is reduced by the alpha-adrenergic agonist, apraclonidine hydrochloride (ALO 2145). Ophthalmology 95, 1217-1220 https://doi.org/10.1016/S0161-6420(88)33038-1
  54. Toris CB, Gleason ML, Camras CB and Yablonski ME (1995) Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol 113, 1514-1517 https://doi.org/10.1001/archopht.1995.01100120044006
  55. Bausher LP and Horio B (1995) Regulation of cyclic AMP production in adult human ciliary processes. Exp Eye Res 60, 43-48 https://doi.org/10.1016/S0014-4835(05)80082-X
  56. Nathanson JA (1981) Human ciliary process adrenergic receptor: pharmacological characterization. Invest Ophthalmol Vis Sci 21, 798-804
  57. Chen S, Inoue R, Inomata H and Ito Y (1994) Role of cyclic AMP-induced Cl conductance in aqueous humour formation by the dog ciliary epithelium. Br J Pharmacol 112, 1137-1145 https://doi.org/10.1111/j.1476-5381.1994.tb13202.x
  58. Do CW and Civan MM (2004) Basis of chloride transport in ciliary epithelium. J Membr Biol 200, 1-13 https://doi.org/10.1007/s00232-004-0688-5
  59. Gabelt BT and Kaufman PL (2005) Changes in aqueous humor dynamics with age and glaucoma. Prog Retin Eye Res 24, 612-637 https://doi.org/10.1016/j.preteyeres.2004.10.003
  60. Toris CB, Yablonski ME, Wang YL and Camras CB (1999) Aqueous humor dynamics in the aging human eye. Am J Ophthalmol 127, 407-412 https://doi.org/10.1016/S0002-9394(98)00436-X
  61. Neufeld AH, Dueker DK, Vegge T and Sears ML (1975) Adenosine 3',5'-monophosphate increases the outflow of aqueous humor from the rabbit eye. Invest Ophthalmol 14, 40-42
  62. Neufeld AH and Sears ML (1975) Adenosine 3',5'-monophosphate analogue increases the outflow facility of the primate eye. Invest Ophthalmol 14, 688-689
  63. Pfeiffer N (1997) Dorzolamide: development and clinical application of a topical carbonic anhydrase inhibitor. Surv Ophthalmol 42, 137-151 https://doi.org/10.1016/S0039-6257(97)00053-2
  64. Mittag TW, Guo WB and Kobayashi K (1993) Bicarbonateactivated adenylyl cyclase in fluid-transporting tissues. Am J Physiol 264, F1060-1064
  65. Lee YS, Tresguerres M, Hess K et al (2011) Regulation of anterior chamber drainage by bicarbonate-sensitive soluble adenylyl cyclase in the ciliary body. J Biol Chem 286, 41353-41358 https://doi.org/10.1074/jbc.M111.284679
  66. Hiett JA and Dockter CA (1992) Topical carbonic anhydrase inhibitors: a new perspective in glaucoma therapy. Optom Clin 2, 97-112
  67. Shahidullah M, Mandal A, Wei G, Levin LR, Buck J and Delamere NA (2014) Nonpigmented ciliary epithelial cells respond to acetazolamide by a soluble adenylyl cyclase mechanism. Invest Ophthalmol Vis Sci 55, 187-197 https://doi.org/10.1167/iovs.13-12717
  68. Lee YS and Marmorstein AD (2014) Control of outflow resistance by soluble adenylyl cyclase. J Ocul Pharmacol Ther 30, 138-142 https://doi.org/10.1089/jop.2013.0199
  69. Yu K, Lujan R, Marmorstein A, Gabriel S and Hartzell HC (2010) Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon. J Clin Invest 120, 1722-1735 https://doi.org/10.1172/JCI41129
  70. Zhang Y, Patil RV and Marmorstein AD (2010) Bestrophin 2 is expressed in human non-pigmented ciliary epithelium but not retinal pigment epithelium. Mol Vis 16, 200-206
  71. Bakall B, McLaughlin P, Stanton JB et al (2008) Bestrophin-2 is involved in the generation of intraocular pressure. Invest Ophthalmol Vis Sci 49, 1563-1570 https://doi.org/10.1167/iovs.07-1338
  72. Zhang Y, Davidson BR, Stamer WD, Barton JK, Marmorstein LY and Marmorstein AD (2009) Enhanced inflow and outflow rates despite lower IOP in bestrophin-2-deficient mice. Invest Ophthalmol Vis Sci 50, 765-770 https://doi.org/10.1167/iovs.08-2501
  73. Chen Y, Cann MJ, Litvin TN et al (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289, 625-628 https://doi.org/10.1126/science.289.5479.625
  74. Donegan RK and Lieberman RL (2016) Discovery of Molecular Therapeutics for Glaucoma: Challenges, Successes, and Promising Directions. J Med Chem 59, 788-809 https://doi.org/10.1021/acs.jmedchem.5b00828
  75. Migdal C (2000) Glaucoma medical treatment: philosophy, principles and practice. Eye 14, 515-518 https://doi.org/10.1038/eye.2000.138
  76. Medeiros FA and Weinreb RN (2002) Medical backgrounders: glaucoma. Drugs Today (Barc) 38, 563-570 https://doi.org/10.1358/dot.2002.38.8.704676
  77. Mitchelson F (2012) Muscarinic receptor agonists and antagonists: effects on ocular function. Handb Exp Pharmacol 208, 263-298
  78. Zhang X, Wang N, Schroeder A and Erickson KA (2000) Expression of adenylate cyclase subtypes II and IV in the human outflow pathway. Invest Ophthalmol Vis Sci 41, 998-1005
  79. Cracknell KP and Grierson I (2009) Prostaglandin analogues in the anterior eye: their pressure lowering action and side effects. Exp Eye Res 88, 786-791 https://doi.org/10.1016/j.exer.2008.08.022
  80. Prasanna G, Li B, Mogi M and Rice DS (2016) Pharmacology of novel intraocular pressure-lowering targets that enhance conventional outflow facility: Pitfalls, promises and what lies ahead? Eur J Pharmacol 787, 47-56 https://doi.org/10.1016/j.ejphar.2016.03.003
  81. Inda C, Dos Santos Claro PA, Bonfiglio JJ et al (2016) Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol 214, 181-195 https://doi.org/10.1083/jcb.201512075
  82. Shen S, Wiemelt AP, McMorris FA and Barres BA (1999) Retinal ganglion cells lose trophic responsiveness after axotomy. Neuron 23, 285-295 https://doi.org/10.1016/S0896-6273(00)80780-1
  83. Goldberg JL, Espinosa JS, Xu Y, Davidson N, Kovacs GT and Barres BA (2002) Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33, 689-702 https://doi.org/10.1016/S0896-6273(02)00602-5
  84. Russo R, Adornetto A, Cavaliere F et al (2015) Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury. Mol Vis 21, 718-729
  85. Rehen SK, Varella MH, Freitas FG, Moraes MO and Linden R (1996) Contrasting effects of protein synthesis inhibition and of cyclic AMP on apoptosis in the developing retina. Development 122, 1439-1448
  86. Meyer-Franke A, Wilkinson GA, Kruttgen A et al (1998) Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681-693 https://doi.org/10.1016/S0896-6273(00)80586-3
  87. Shaw PX, Fang J, Sang A, Wang Y, Kapiloff MS and Goldberg JL (2016) Soluble Adenylyl Cyclase Is Required for Retinal Ganglion Cell and Photoreceptor Differentiation. Invest Ophthalmol Vis Sci 57, 5083-5092 https://doi.org/10.1167/iovs.16-19465
  88. Lucas DR and Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58, 193-201 https://doi.org/10.1001/archopht.1957.00940010205006
  89. Olney JW and Ho OL (1970) Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine. Nature 227, 609-611
  90. Olney JW (1969) Glutaate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J Neuropathol Exp Neurol 28, 455-474 https://doi.org/10.1097/00005072-196907000-00007
  91. Lipton SA (2003) Possible role for memantine in protecting retinal ganglion cells from glaucomatous damage. Surv Ophthalmol 48 Suppl 1, S38-46 https://doi.org/10.1016/S0039-6257(03)00008-0
  92. Dong CJ, Guo Y, Agey P, Wheeler L and Hare WA (2008) Alpha2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest Ophthalmol Vis Sci 49, 4515-4522 https://doi.org/10.1167/iovs.08-2078
  93. Gao H, Qiao X, Cantor LB and WuDunn D (2002) Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells. Arch Ophthalmol 120, 797-803 https://doi.org/10.1001/archopht.120.6.797
  94. Dong CJ, Guo Y, Wheeler L and Hare WA (2007) Alpha2 adrenergic receptor-mediated modulation of cytosolic Ca++ signals at the inner plexiform layer of the rat retina. Invest Ophthalmol Vis Sci 48, 1410-1415 https://doi.org/10.1167/iovs.06-0890
  95. Maier C, Steinberg GK, Sun GH, Zhi GT and Maze M (1993) Neuroprotection by the alpha 2-adrenoreceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology 79, 306-312 https://doi.org/10.1097/00000542-199308000-00016
  96. Matsuo T and Cynader MS (1992) Localization of alpha-2 adrenergic receptors in the human eye. Ophthalmic Res 24, 213-219 https://doi.org/10.1159/000267170
  97. Wheeler LA, Gil DW and WoldeMussie E (2001) Role of alpha-2 adrenergic receptors in neuroprotection and glaucoma. Surv Ophthalmol 45 Suppl 3, S290-294; discussion S295-296 https://doi.org/10.1016/S0039-6257(01)00206-5
  98. Woldemussie E, Wijono M and Pow D (2007) Localization of alpha 2 receptors in ocular tissues. Vis Neurosci 24, 745-756 https://doi.org/10.1017/S0952523807070605
  99. Kalapesi FB, Coroneo MT and Hill MA (2005) Human ganglion cells express the alpha-2 adrenergic receptor: relevance to neuroprotection. Br J Ophthalmol 89, 758-763 https://doi.org/10.1136/bjo.2004.053025
  100. Evans DW, Hosking SL, Gherghel D and Bartlett JD (2003) Contrast sensitivity improves after brimonidine therapy in primary open angle glaucoma: a case for neuroprotection. Br J Ophthalmol 87, 1463-1465 https://doi.org/10.1136/bjo.87.12.1463
  101. Krupin T, Liebmann JM, Greenfield DS, Ritch R and Gardiner S (2011) A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol 151, 671-681 https://doi.org/10.1016/j.ajo.2010.09.026
  102. Goldenberg-Cohen N, Dadon-Bar-El S, Hasanreisoglu M et al (2009) Possible neuroprotective effect of brimonidine in a mouse model of ischaemic optic neuropathy. Clin Exp Ophthalmol 37, 718-729 https://doi.org/10.1111/j.1442-9071.2009.02108.x
  103. Lee KY, Nakayama M, Aihara M, Chen YN and Araie M (2010) Brimonidine is neuroprotective against glutamateinduced neurotoxicity, oxidative stress, and hypoxia in purified rat retinal ganglion cells. Mol Vis 16, 246-251
  104. Lambert WS, Ruiz L, Crish SD, Wheeler LA and Calkins DJ (2011) Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons. Mol Neurodegener 6, 4 https://doi.org/10.1186/1750-1326-6-4
  105. Lee D, Kim KY, Noh YH et al (2012) Brimonidine blocks glutamate excitotoxicity-induced oxidative stress and preserves mitochondrial transcription factor a in ischemic retinal injury. PLoS One 7, e47098 https://doi.org/10.1371/journal.pone.0047098
  106. Donello JE, Padillo EU, Webster ML, Wheeler LA and Gil DW (2001) alpha(2)-Adrenoceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia. J Pharmacol Exp Ther 296, 216-223
  107. Han Y and Wu SM (2002) NMDA-evoked [Ca2+]i increase in salamander retinal ganglion cells: modulation by PKA and adrenergic receptors. Vis Neurosci 19, 249-256 https://doi.org/10.1017/S0952523802192029
  108. Miotke JA, MacLennan AJ and Meyer RL (2007) Immunohistochemical localization of CNTFRalpha in adult mouse retina and optic nerve following intraorbital nerve crush: evidence for the axonal loss of a trophic factor receptor after injury. J Comp Neurol 500, 384-400 https://doi.org/10.1002/cne.21174
  109. Dunn TA, Storm DR and Feller MB (2009) Calciumdependent increases in protein kinase-A activity in mouse retinal ganglion cells are mediated by multiple adenylate cyclases. PLoS One 4, e7877 https://doi.org/10.1371/journal.pone.0007877
  110. Dunn TA, Wang CT, Colicos MA et al (2006) Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. J Neurosci 26, 12807-12815 https://doi.org/10.1523/JNEUROSCI.3238-06.2006
  111. Park YH, Mueller BH 2nd, McGrady NR, Ma HY and Yorio T (2015) AMPA receptor desensitization is the determinant of AMPA receptor mediated excitotoxicity in purified retinal ganglion cells. Exp Eye Res 132, 136-150 https://doi.org/10.1016/j.exer.2015.01.026
  112. Nicol X, Bennis M, Ishikawa Y et al (2006) Role of the calcium modulated cyclases in the development of the retinal projections. Eur J Neurosci 24, 3401-3414 https://doi.org/10.1111/j.1460-9568.2006.05227.x
  113. Sunahara RK and Taussig R (2002) Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2, 168-184 https://doi.org/10.1124/mi.2.3.168
  114. Jonas JB, Mardin CY, Schlotzer-Schrehardt U and Naumann GO (1991) Morphometry of the human lamina cribrosa surface. Invest Ophthalmol Vis Sci 32, 401-405
  115. Schneider M and Fuchshofer R (2016) The role of astrocytes in optic nerve head fibrosis in glaucoma. Exp Eye Res 142, 49-55 https://doi.org/10.1016/j.exer.2015.08.014
  116. Hernandez MR, Miao H and Lukas T (2008) Astrocytes in glaucomatous optic neuropathy. Prog Brain Res 173, 353-373
  117. Hernandez MR (2000) The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 19, 297-321 https://doi.org/10.1016/S1350-9462(99)00017-8
  118. Anderson DR (1969) Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol 82, 800-814 https://doi.org/10.1001/archopht.1969.00990020792015
  119. Varela HJ and Hernandez MR (1997) Astrocyte responses in human optic nerve head with primary open-angle glaucoma. J Glaucoma 6, 303-313
  120. Lukas TJ, Miao H, Chen L et al (2008) Susceptibility to glaucoma: differential comparison of the astrocyte transcriptome from glaucomatous African American and Caucasian American donors. Genome Biol 9, R111 https://doi.org/10.1186/gb-2008-9-7-r111
  121. Chen L, Lukas TJ and Hernandez MR (2009) Hydrostatic pressure-dependent changes in cyclic AMP signaling in optic nerve head astrocytes from Caucasian and African American donors. Mol Vis 15, 1664-1672
  122. Ju WK, Kim KY, Noh YH et al (2015) Increased mitochondrial fission and volume density by blocking glutamate excitotoxicity protect glaucomatous optic nerve head astrocytes. Glia 63, 736-753 https://doi.org/10.1002/glia.22781
  123. Son JL, Soto I, Oglesby E et al (2010) Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia 58, 780-789
  124. Sun D, Lye-Barthel M, Masland RH and Jakobs TC (2010) Structural remodeling of fibrous astrocytes after axonal injury. J Neurosci 30, 14008-14019 https://doi.org/10.1523/JNEUROSCI.3605-10.2010
  125. Dai C, Khaw PT, Yin ZQ, Li D, Raisman G and Li Y (2012) Structural basis of glaucoma: the fortified astrocytes of the optic nerve head are the target of raised intraocular pressure. Glia 60, 13-28 https://doi.org/10.1002/glia.21242
  126. Leske MC (2007) Open-angle glaucoma -- an epidemiologic overview. Ophthalmic Epidemiol 14, 166-172 https://doi.org/10.1080/09286580701501931
  127. Miao H, Chen L, Riordan SM et al (2008) Gene expression and functional studies of the optic nerve head astrocyte transcriptome from normal African Americans and Caucasian Americans donors. PLoS One 3, e2847 https://doi.org/10.1371/journal.pone.0002847
  128. Trimmer PA and McCarthy KD (1986) Immunocytochemically defined astroglia from fetal, newborn and young adult rats express beta-adrenergic receptors in vitro. Brain Res 392, 151-165
  129. Salm AK and McCarthy KD (1990) Norepinephrineevoked calcium transients in cultured cerebral type 1 astroglia. Glia 3, 529-538 https://doi.org/10.1002/glia.440030612
  130. Mantyh PW, Rogers SD, Allen CJ et al (1995) Beta 2-adrenergic receptors are expressed by glia in vivo in the normal and injured central nervous system in the rat, rabbit, and human. J Neurosci 15, 152-164 https://doi.org/10.1523/JNEUROSCI.15-01-00152.1995
  131. Small KM, Brown KM, Theiss CT et al (2003) An Ile to Met polymorphism in the catalytic domain of adenylyl cyclase type 9 confers reduced beta2-adrenergic receptor stimulation. Pharmacogenetics 13, 535-541 https://doi.org/10.1097/00008571-200309000-00002
  132. Lopez-Canales OA, Castillo-Hernandez MC, Vargas-Robles H, Rios A, Lopez-Canales JS and Escalante B (2016) Role of adenylyl cyclase in reduced beta-adrenoceptormediated vasorelaxation during maturation. Braz J Med Biol Res 49, e5285
  133. Sato PY, Chuprun JK, Schwartz M and Koch WJ (2015) The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev 95, 377-404 https://doi.org/10.1152/physrev.00015.2014
  134. Peppel K, Boekhoff I, McDonald P, Breer H, Caron MG and Lefkowitz RJ (1997) G protein-coupled receptor kinase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization. J Biol Chem 272, 25425-25428 https://doi.org/10.1074/jbc.272.41.25425
  135. Yamamoto S, Sippel KC, Berson EL and Dryja TP (1997) Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nature Genet 15, 175-178 https://doi.org/10.1038/ng0297-175
  136. De Vries L, Zheng B, Fischer T, Elenko E and Farquhar MG (2000) The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 40, 235-271 https://doi.org/10.1146/annurev.pharmtox.40.1.235
  137. Wang Q, Liu M, Mullah B, Siderovski DP and Neubig RR (2002) Receptor-selective effects of endogenous RGS3 and RGS5 to regulate mitogen-activated protein kinase activation in rat vascular smooth muscle cells. J Biol Chem 277, 24949-24958 https://doi.org/10.1074/jbc.M203802200
  138. Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25, 490-513 https://doi.org/10.1016/j.preteyeres.2006.07.003
  139. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38, 357-366 https://doi.org/10.1002/ana.410380304
  140. Jenner P (1991) Oxidative stress as a cause of Parkinson's disease. Acta Neurol Scand Suppl 136, 6-15
  141. Coyle JT and Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689-695 https://doi.org/10.1126/science.7901908
  142. Dringen R, Pawlowski PG and Hirrlinger J (2005) Peroxide detoxification by brain cells. J Neurosci Res 79, 157-165 https://doi.org/10.1002/jnr.20280
  143. Fernandez-Fernandez S, Almeida A and Bolanos JP (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J 443, 3-11 https://doi.org/10.1042/BJ20111943
  144. Noh YH, Kim KY, Shim MS et al (2013) Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes. Cell Death Dis 4, e820 https://doi.org/10.1038/cddis.2013.341
  145. Lee D, Shim MS, Kim KY et al (2014) Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stressmediated mitochondrial alteration in a mouse model of glaucoma. Invest Ophthalmol Vis Sci 55, 993-1005 https://doi.org/10.1167/iovs.13-12564
  146. Lee D, Kim KY, Shim MS et al (2014) Coenzyme Q10 ameliorates oxidative stress and prevents mitochondrial alteration in ischemic retinal injury. Apoptosis 19, 603-614 https://doi.org/10.1007/s10495-013-0956-x
  147. Kim SY, Shim MS, Kim KY, Weinreb RN, Wheeler LA and Ju WK (2014) Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury. Cell Death Dis 5, e1105
  148. Yan L, Vatner DE, O'Connor JP et al (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130, 247-258 https://doi.org/10.1016/j.cell.2007.05.038
  149. Ogura M, Taniura H, Nakamichi N and Yoneda Y (2007) Upregulation of the glutamine transporter through transactivation mediated by cAMP/protein kinase A signals toward exacerbation of vulnerability to oxidative stress in rat neocortical astrocytes. J Cell Physiol 212, 375-385 https://doi.org/10.1002/jcp.21031
  150. Ciccarelli R, D'Alimonte I, Ballerini P et al (2007) Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes. Mol Pharmacol 71, 1369-1380 https://doi.org/10.1124/mol.106.031617
  151. Durand D, Carniglia L, Caruso C and Lasaga M (2011) Reduced cAMP, Akt activation and p65-c-Rel dimerization: mechanisms involved in the protective effects of mGluR3 agonists in cultured astrocytes. PLoS One 6, e22235 https://doi.org/10.1371/journal.pone.0022235
  152. Seifert R (2013) Functional selectivity of G-proteincoupled receptors: from recombinant systems to native human cells. Biochem Pharmacol 86, 853-861 https://doi.org/10.1016/j.bcp.2013.07.029
  153. Berstein G, Blank JL, Smrcka AV et al (1992) Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11, and phospholipase C-beta 1. J Biol Chem 267, 8081-8088
  154. Buck MA and Fraser CM (1990) Muscarinic acetylcholine receptor subtypes which selectively couple to phospholipase C: pharmacological and biochemical properties. Biochem Biophys Res Commun 173, 666-672 https://doi.org/10.1016/S0006-291X(05)80087-7
  155. Burford NT and Nahorski SR (1996) Muscarinic m1 receptor-stimulated adenylate cyclase activity in Chinese hamster ovary cells is mediated by Gs alpha and is not a consequence of phosphoinositidase C activation. Biochem J 315 (Pt 3), 883-888 https://doi.org/10.1042/bj3150883
  156. Qin K, Dong C, Wu G and Lambert NA (2011) Inactivestate preassembly of G(q)-coupled receptors and G(q) heterotrimers. Nat Chem Biol 7, 740-747 https://doi.org/10.1038/nchembio.642
  157. Jones SV, Heilman CJ and Brann MR (1991) Functional responses of cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol 40, 242-247
  158. Caulfield MP (1993) Muscarinic receptors--characterization, coupling and function. Pharmacol Ther 58, 319-379 https://doi.org/10.1016/0163-7258(93)90027-B

Cited by

  1. Neuroprotection in Glaucoma: Old and New Promising Treatments vol.2017, pp.1687-6342, 2017, https://doi.org/10.1155/2017/4320408
  2. Evaluation of heat shock protein (HSP-72) expression in retinal ganglion cells of rats with glaucoma vol.14, pp.2, 2017, https://doi.org/10.3892/etm.2017.4635
  3. Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes vol.9, pp.3, 2018, https://doi.org/10.1038/s41419-017-0171-8