• Title/Summary/Keyword: Negative ion

Search Result 576, Processing Time 0.028 seconds

A Study for Development and Characteristics of Electrostatic Eliminator Suitable for the Super Clean Room Less than Class 100(I) (공기 청정지역(Class 100 이하)에 적합한 정전기 제거장치의 개발 및 특성에 관한 연구(I) - LCD 제조 공정을 중심으로 -)

  • Jung, Yong-Chul;Park, Hoon-Kyu;Lee, Dong-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.60-65
    • /
    • 2006
  • It is a well known fact that LCD is a central part of the IT industry which is important in the present and the future. But the biggest problem of LCD manufacturing is maintaining a cleaning room environment and administration. Therefore the purpose of this study is to first, prevent the yield depreciation and damage of products, and second, protect the worker ftom accidental electrostatic discharge during LCD manufacture. The soft x-ray ionizer is a type of electrostatic reducer device. It protects against electrostatic discharge in the cleaning room environment and is a necessary environmental factor during LCD production. The positive aspects of the soft x-ray are its shorter time and wider angle of exposure. But the negative aspect of the soft x-ray is its need for several shielding of protection from the harmful x-ray exposure. On this study, the development of the Air Nozzle-type ionizer to amend and refine some problems. For example, examined the electrostatic reduce device of a soft x-ray type and discovered the ion did not go inside well. also workers to be free from danger. An Air Nozzle-type ionizer is comprised of soft x-ray radiation and ionized air production. Air is injected through the nozzle after being ionized from radiation. It supplies air keeping the same pressure into the end foundation of ion production. The soft x-ray is the structure which radiates ionized air through the nozzle (21 holes) having micro holes of the ionizable radiation after ionizing the inside air by the ion production. A worker does not need a cover to protect against x-rays and the Air Nozzle-type ionizer is easy to set up and is more effective at eliminating electrostatic.

The Effect of Crystalline Type of Carbonaceous Materials on Performance of the Carbon Anode for Lithium Ion Secondary Battery (리튬이온이차전지에서 결정성 탄소재료가 탄소부극 특성에 미치는 영향)

  • Kim, Hyun-Joong;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1059-1064
    • /
    • 1998
  • We have investigated various kind of graphite and MCMB6-28 to develop carbon negative electrode for lithium ion secondary battery. The interlayer length of them was $3.358{\sim}3.363{\AA}$ and the BET specific surface area was $2.95{\sim}26.15m^2/g$. From this study, When the interlayer of them was large and the BET specific surface area was high, the electrochemical characteristics of them was very excellent. Adding 0, 3, 5, wt% of KJ-Black as conducting agent to various graphitic carbon active materials, interface resistance of electrode and electrolyte was less, but rechargeability was better at 3 wt%. At constant current charge and discharge test, discharge capacity was small according to large current.

  • PDF

Antifungal Mechanism of Antifungal Peptide Derived from Cecropin A(1-8)- Melittin(1-12) Hybrid against Aspergillus fumigatus

  • Lee, Dong-Gun;Jin, Zhe-Zhu;Maeng, Cheol-Young;Shin, Song-Yub;Seo, Moo-Yeol;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.168-172
    • /
    • 1999
  • The antifungal mechanism of the antifungal peptide against Aspergillus fumigatus, $K^{18,19}$-CA(l-8)-ME(l-12), derived from cecropin A(l-8)-melittin(l-12) was investigated by confocal laser scanning microscopy, cell wall regeneration, ATPase activity inhibition, and released potassium ion. By confocal laser scanning microscopy, $K^{18,19}$-CA(l-8)-ME(l-12) was detected on the surface of A. fumigatus, while cecropin A used as a negative control peptide was not detected. The protoplast of A. fumigatus treated with$K^{18,19}$-CA(1-8)-ME(1-12) failed to regenerate the fungal cell walls. Compared with cecropin A, the amount of potassium ion released by $K^{18,19}$-CA(l-8)-ME(l-12) was increased. Furthermore, $K^{18,19}$-CA(l-8)-ME(l-12) inhibited the ATPase activity on the plasma membrane. These results suggested that $K^{18,19}$-CA(l-8)-ME(1-12) acts on the plasma membrane of A. fumigatus and its antifungal action is due to the ion channel or pore formation on the plasma membrane.

  • PDF

Study on The Salinization in Groundwater of the Eastern Area of Cheju Island (제주도 동부지역 지하수의 염수화에 관한 연구)

  • 김지영;오윤근;류성필
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.47-58
    • /
    • 2001
  • According to the results of the groundwater quality investigation about 230 holes all over the country, the groundwater which was in excess of standard grows larger every year and closed holes increased to 23,457 holes in 1997 from 15,724 holes in 1996. This is the major reasons that water quality contamination, shortage of water quantity, increasing of salinity and so on. There are 7 groundwater salinization sources which are condisered as most important on a regional level. And among theses the Cheju Island groundwater salinization sources are (1) halite solution, (2) natural saline groundwater, (3) sea-water intrusion. The method of taking an isotopes is one of research methods of the origin of groundwater salinization and is used in so many studies because it has very high confidence. $^{18O}O, ^2H, ^3H, ^{14}C$ and so on in an isotopes are frequently used in the method of them. Consequently on this study we analyzed major ions and $^3H$ in groundwater, sea-water and rain of the eastern part of cheju island known as contaminated site from long time ago to examine the origin of groundwater salinization. Relation ratios of the major ions versus chloride ion shows similar tendency to sea-water. This indicates that sea-water entered the groundwater layer. And amount of $^3H$ in holes of the land side is higher than of the sea side. Relation of chloride ion versus $^3$H indicates negative character. Therefore we can think that the reason of groundwater salinization of this part is natural saline groundwater and halite solution by relation.

  • PDF

Growth Response in Hydroponic Cultured Dracaena braunii Grown under Various Chloride Ion Concentrations (수경재배에서 제설제 염소이온 농도에 따른 개운죽 (Dracaena braunii)의 생육반응)

  • Son, Hye-Mi;Park, Ju-Young;Yoon, Young-Han;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1081-1086
    • /
    • 2017
  • The present study was conducted for the purpose of analyzing the growth response of Dracaena braunii treated with chloride ions and to evaluate its salt tolerance. Distilled water (CON) was spiked with 1 (C1), 2 (C2), 5 (C5), 10 (C10) and 15 g/L (C15) $CaCl_2$, respectively. Acidity (pH) and electrical conductivity of hydroponic solution, and leaf width, leaf length, root length, number of leaves, fresh weight, dry weight and the water content of Dracaena braunii were measured. Acidity and electrical conductivity remarkably increased commensurate with increasing concentrations of $CaCl_2$. Growth in the C1 treatment was better than that in CON, whereas the C10 or C15 treatments caused either slow growth or withering of the plants. Fresh weight, dry weight and water content were significantly decreased in response to $CaCl_2$ concentration, compared with those in the control. These results showed that $CaCl_2$ concentration less than 1 g/L may be used as a hydroponic solution for D. braunii, as long as the water quality is not too saline. The chlorine ion has a negative effect on the growth.

Analysis of Discharge Characteristics and Fire Risk of Mobile Phone Batteries according to the Concentration of Salt Water (염수농도에 따른 휴대폰 배터리의 방전특성과 화재 위험성 분석)

  • Woo, Jin-Su;So, Soo-Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.66-71
    • /
    • 2020
  • The process of discharging batteries using salt water, when used for the disposal of a lithium-ion (Li-ion) batteries, is likely to cause a fire. However, there is a dearth of studies in the literature on the risk of fire while discharging mobile phone batteries in salt water. In order to investigate the possibility of fire by elucidating the discharge characteristics and the generation of heat, we conducted experiments by varying the concentration of the salt water, number of overlapping batteries, and type of the mobile phone batteries used as experimental specimen. The discharging voltage and the temperature of the batteries were measured, and the fire risk was predicted by analyzing the data. The results of the experiment showed that the higher the salt water concentration, the greater the discharge value of the mobile phone battery and the higher the exothermic temperature. Moreover, the exothermic temperatures of the overlapping batteries were higher than that of the single battery submerged in salt water. The highest exothermic temperature points of the battery occurred at the positive and negative poles.

Durability assessment of self-compacting concrete with fly ash

  • Deilami, Sahar;Aslani, Farhad;Elchalakani, Mohamed
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.489-499
    • /
    • 2017
  • Self-Compacting Concrete (SCC) is a new technology capable to flow without segregation or any addition of energy which leads to efficient construction and cost savings. In this study, the effect of replacing the Ordinary Portland Cement (OPC) with Fly Ash (FA) on the strength, durability of the concrete was investigated experimentally, and carbon footprint and cost were also assessed. Four different replacement FA ratios (0%, 20%, 40% and 60%) were used to create four SCC mixes. Standard test methods were used to determine the workability, strength, and durability of the SCC mixes including resist chloride ion penetration, water permeability, water absorption, and initial surface absorption. The axial cube compressive strength tests were performed on the SCC mixes at 1, 7, 14, 28 and 35 days. Replacing the OPC with FA had a significant positive impact on chloride iron penetration resistance and water absorption but had a considerable negative impact on the compressive strength. The SCC mix with 60% FA had 36.7% and 15.8% enhancement in the resistance to chloride ion penetration and water absorption, respectively. Evaluation of the carbon footprint and the cost of each SCC mixes showed the $CO_2$ emissions mixes 1, 2, 3 and 4 were significantly reduced by increasing the FA content from 0% to 60%. Compared with the control mix, the cost of all mixes increased when the FA content increased, but no significant differences were seen between the estimated costs of all four mixes.

Study of PSII-treated PMMA, PHEMA, and PHPMA ; Investigation of Their Surface Stabilities

  • Hyuneui Lim;Lee, Yeonhee;Seunghee Han;Jeonghee Cho;Moojin suh;Kem, Kang-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.204-204
    • /
    • 1999
  • The plasma source ion implantation(PSII) technique which is a method using high negative voltage pulse in plasma system has the potential to change the surface properties of polymer. PSII technique increase the surface free energy by introducing polar functional groups on the surface so that it improves reactivity, hydrophilicity, adhension, biocompatability, etc. However, the mobility of polymer chains enables the modified surface layers to adapt their composition to interfacial force. This hydrophobic recovery interrupts the stability of modified surfaces to keep for the long time. In this study, poly(methyl methacrylate)(PMMA), poly(2-hydroxyethyl methacrylate)(PHEMA), and polu(2-hydroxypropyl methacylate)(PHPMA) for contact lens application, were modified to improve the wettability with PSII technique and were investigated the surface stabilities. Polymer film was prepared with solution casting(3 wt.% solution) and was annealed at 11$0^{\circ}C$ under vacuum oven to remove solvent completely and to eliminate physical ageing. The thickness of the film measured by scanning electron microscopy (SEM) and surface profilometer was about 10${\mu}{\textrm}{m}$. Polymers were treated with different kinds of gases, pulse frequency, pulse with, pulse voltage, and treatment time. Even though PMMA, PHEMA, and PHPMA have similar repeat unit structure, the optimal treatment conditions and the tendency to hydrophobic recovery were different. PHPMA, more hydrophilic polymer than PMMA and PHEMA showd better wettability and stability after mild treatment. Surface tensions were obtained by water and diiodomethane contact angle measurements to monitor the relation between hydrophobic recovery and polymer structure. Different ion species in plasma change the polar component and dispersion component of polymer surface. For better wettability surface, the increase of polar component was a dominant factor. We also characterized modified polymer surfaces using x-ray photoelectron spectroscopy(XPS), secondary ion mass spectrometry(SIMS), Fourier Transform infrared spectroscopy(FT-IR), and SEM.

  • PDF

Quantum Chemical Studies on Nicotinato Lead(II) Complex [Pb(II)(C5H4NCOO)2]

  • Zhao, Pu Su;Li, Rong Qing;Song, Jie;Guo, Meng Ping
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.546-550
    • /
    • 2008
  • The title compound of nicotinato lead(II) complex [Pb$(C_5H_4NCOO)_2$] has been optimized at B3LYP/LANL2DZ and HF/LANL2DZ levels of theory. The calculated results show that the lead(II) ion adopts 2- coordinate geometry, which is the same as its crystal structure and different from the 4-coordinate geometry of isonicotinato lead(II) complex. Atomic charge distributions indicate that during forming the title compound, each nicotinic acid ion transfers their negative charges to central lead(II) ion. The electronic spectra calculated by B3LYP/LANL2DZ level show that there exist two absorption bands, which have some red shifts compared with those of isonicotinato lead(II) complex and the electronic transitions are mainly derived from intraligand $\pi$ -$\pi$ transition and ligand-to-metal charge transfer (LMCT) transition. CIS-HF method is not suitable for the system studied here. The thermodynamic properties of the title compound at different temperatures have been calculated and corresponding relations between the properties and temperature have also been obtained. The second order optical nonlinearity was calculated, and the molecular hyperpolarizability was $1.147754{\times}10^{-30}$ esu.

Theoretical Studies on the Cationic Polymerization Mechanism of Cyclic Acetals (산 촉매하의 Cyclic Acetals 공중합반응에 관한 분자궤도론적 연구)

  • Young-Gu Cheun;Jae-Kyung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.197-204
    • /
    • 1992
  • The cationic polymerization of cyclic acetals are investigated theoretically using the semiempirical MINDO/3, MNDO, and $AM_1$, methods. The nucleophilicity and basicity of cyclic acetals can be explained by the negative charge on oxygen atom of cyclic acetals. The reactivity of propagation in the polymerization of cyclic acetals can be represented by the positive charge on $C_2$ atom and the low LUMO energy of active species of cyclic acetals. The reactivity of 2-buthyl-1,3-dioxepane(2-Bu-DOP) of cyclic oxonium and opening carbenium ion form is expected computational stability of the oxonium ion by 5${\sim}$7kcal/mole favoring the carbenium ion. Owing to the rapid equilibrium of these cation forms and the reaction coordinate based on calculation that the reaction coordinate based on calculation that the chain growth $S_N1$ mechanism will be at least as fast as that for $S_N2$ mechanism.

  • PDF