DOI QR코드

DOI QR Code

Quantum Chemical Studies on Nicotinato Lead(II) Complex [Pb(II)(C5H4NCOO)2]

  • Zhao, Pu Su (Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Teachers College) ;
  • Li, Rong Qing (Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Teachers College) ;
  • Song, Jie (Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Teachers College) ;
  • Guo, Meng Ping (College of Chemistry and Bioengineering, Yichun University)
  • Published : 2008.03.20

Abstract

The title compound of nicotinato lead(II) complex [Pb$(C_5H_4NCOO)_2$] has been optimized at B3LYP/LANL2DZ and HF/LANL2DZ levels of theory. The calculated results show that the lead(II) ion adopts 2- coordinate geometry, which is the same as its crystal structure and different from the 4-coordinate geometry of isonicotinato lead(II) complex. Atomic charge distributions indicate that during forming the title compound, each nicotinic acid ion transfers their negative charges to central lead(II) ion. The electronic spectra calculated by B3LYP/LANL2DZ level show that there exist two absorption bands, which have some red shifts compared with those of isonicotinato lead(II) complex and the electronic transitions are mainly derived from intraligand $\pi$ -$\pi$ transition and ligand-to-metal charge transfer (LMCT) transition. CIS-HF method is not suitable for the system studied here. The thermodynamic properties of the title compound at different temperatures have been calculated and corresponding relations between the properties and temperature have also been obtained. The second order optical nonlinearity was calculated, and the molecular hyperpolarizability was $1.147754{\times}10^{-30}$ esu.

Keywords

References

  1. Lanphear, B. P. Science 1998, 281, 1617 https://doi.org/10.1126/science.281.5383.1617
  2. Lanphear, B. P.; Roghmann, K. J. Environ. Res. 1997, 74, 67 https://doi.org/10.1006/enrs.1997.3726
  3. Sigel, H.; Da Costa, C. P.; Martín, R. B. Coord. Chem. Rev. 2001, 435, 219
  4. Wang, J.; Liu, Z. R.; Zhang, X. D.; Jia, W. G.; Fan, D. M. Chinese J. Struct. Chem. 2003, 22, 454
  5. Fleischer, H.; Schollmeyer, D. Inorg. Chem. 2004, 43, 5529 https://doi.org/10.1021/ic0498889
  6. Li, H. H.; Chen, Z. R.; Li, J. Q.; Huang, C. C.; Zhao, B.; Ni, Z. X. Chinese J. Struct. Chem. 2005, 24, 39
  7. Hancock, R. D.; Reibenspies, J. H.; Maumela, H. Inorg. Chem. 2004, 43, 2981 https://doi.org/10.1021/ic030277a
  8. Wang, W.; Basinger, A.; Shane, B.; Myong, S. A.; Christiansen, M.; Hellerstein, M. Am. J. Physiol. 2001, 280, 540 https://doi.org/10.1152/ajpcell.2001.280.3.C540
  9. Berg, I.; Potter, B. J. Cell Biol. 2000, 150, 581 https://doi.org/10.1083/jcb.150.3.581
  10. Ahren, B. Acta Physiol. Scand. 2001, 171, 161 https://doi.org/10.1046/j.1365-201x.2001.00794.x
  11. Cingi, M. B.; Manfredotti, A. G.; Guastini, C.; Musatti, A. Gazz. Chim. Ital. 1975, 105, 117
  12. Lipkowitz, K. B.; Boyd, D. B. Reviews in Computational Chemistry; VCH: New York, 1990-1999; Vols. 1-13
  13. Zhao, P. S.; Jian, F. F.; Li, C. L.; Zheng, J. Chinese J. Struct. Chem. 2006, 25, 657
  14. Zhao, P. S.; Xu, J. M.; Li, R. Q.; Cai, Z. J. Polish J. Chem. 2007, 81, 85
  15. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F. J. Am. Chem. Soc. 1985, 107, 3902 https://doi.org/10.1021/ja00299a024
  16. Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 1996, 17, 49 https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
  17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Wallingford CT, 2004
  18. Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 454 https://doi.org/10.1016/0009-2614(96)00440-X
  19. Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439 https://doi.org/10.1063/1.475855
  20. Foresman, J. B.; Head-Gordon, M.; Pople, J. A.; Frisch, M. J. J. Phys. Chem. 1992, 96, 135 https://doi.org/10.1021/j100180a030
  21. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899 https://doi.org/10.1021/cr00088a005
  22. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735 https://doi.org/10.1063/1.449486
  23. Gerratt, J.; Mills, I. M. J. Chem. Phys. 1968, 49, 1719 https://doi.org/10.1063/1.1670299
  24. Pulay, P. J. Chem. Phys. 1983, 78, 5043 https://doi.org/10.1063/1.445372
  25. Osamura, Y.; Yamaguchi, Y.; Schaefer, III, H. F. J. Chem. Phys. 1982, 77, 383 https://doi.org/10.1063/1.443617
  26. Dykstra, C. E.; Jasien, P. G. Chem. Phys. Lett. 1984, 109, 388 https://doi.org/10.1016/0009-2614(84)85607-9

Cited by

  1. Theoretical investigation on the vibrational and electronic spectra of three isomeric forms of dicobalt octacarbonyl vol.1062, pp.None, 2008, https://doi.org/10.1016/j.molstruc.2013.12.075
  2. Theoretical study on the antitumor properties of Ru(II) complexes containing 2-pyridyl, 2-pyridine-4-carboxylic acid ligands vol.1149, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2017.07.079
  3. Theoretical study on the antitumor properties of Ru(II) complexes containing 2-pyridyl, 2-pyridine-4-carboxylic acid ligands vol.1149, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2017.07.079
  4. Research on structural, spectral (IR, UV-Vis, 1H- and 13C-NMR) and light emitting properties of triisocyano-based trinuclear Au(I) complexes vol.74, pp.8, 2020, https://doi.org/10.1007/s11696-020-01088-3