• 제목/요약/키워드: Negative binomial

Search Result 302, Processing Time 0.022 seconds

Penalized Likelihood Regression with Negative Binomial Data with Unknown Shape Parameter

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2007
  • We consider penalized likelihood regression with data from the negative binomial distribution with unknown shape parameter. Smoothing parameter selection and asymptotically efficient low dimensional approximations are employed for negative binomial data along with shape parameter estimation through several different algorithms.

Traffic Crash Prediction Models for Expressway Ramps (고속도로 연결로의 교통사고예측모형 개발)

  • Choi, Yoon-Hwan;Oh, Young-Tae;Choi, Kee-Choo;Lee, Choul-Ki;Yun, Il-Soo
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.133-143
    • /
    • 2012
  • PURPOSES: Using the collected data for crash, traffic volume, and design elements on ramps between 2007 and 2009, this research effort was initiated to develop traffic crash prediction models for expressway ramps. METHODS: Three negative binomial regression models and three zero-inflated negative binomial regression models were developed for individual ramp types, including direct, semi-direct and loop, respectively. For validating the developed models, authors compared the estimated crash frequencies with actual crash frequencies of twelve randomly selected interchanges, the ramps of which have not been used for model developing. RESULTS: The results show that the negative binomial regression models for direct, semi-direct and loop ramps showed 60.3%, 63.8% and 48.7% error rates on average whereas the zero-inflated negative binomial regression models showed 82.1%, 120.4% and 57.3%, respectively. CONCLUSIONS: Conclusively, the negative binomial regression models worked better in traffic crash prediction than the zero-inflated negative binomial regression models for estimating the frequency of traffic accidents on expressway ramps.

On Some Distributions Generated by Riff-Shuffle Sampling

  • Son M.S.;Hamdy H.I.
    • International Journal of Contents
    • /
    • v.2 no.2
    • /
    • pp.17-24
    • /
    • 2006
  • The work presented in this paper is divided into two parts. The first part presents finite urn problems which generate truncated negative binomial random variables. Some combinatorial identities that arose from the negative binomial sampling and truncated negative binomial sampling are established. These identities are constructed and serve important roles when we deal with these distributions and their characteristics. Other important results including cumulants and moments of the distributions are given in somewhat simple forms. Second, the distributions of the maximum of two chi-square variables and the distributions of the maximum correlated F-variables are then derived within the negative binomial sampling scheme. Although multinomial theory applied to order statistics and standard transformation techniques can be used to derive these distributions, the negative binomial sampling approach provides more information and deeper insight regarding the nature of the relationship between the sampling vehicle and the probability distributions of these functions of chi-square variables. We also provide an algorithm to compute the percentage points of these distributions. We supplement our findings with exact simple computational methods where no interpolations are involved.

  • PDF

The Role of Negative Binomial Sampling In Determining the Distribution of Minimum Chi-Square

  • Hamdy H.I.;Bentil Daniel E.;Son M.S.
    • International Journal of Contents
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • The distributions of the minimum correlated F-variable arises in many applied statistical problems including simultaneous analysis of variance (SANOVA), equality of variance, selection and ranking populations, and reliability analysis. In this paper, negative binomial sampling technique is employed to derive the distributions of the minimum of chi-square variables and hence the distributions of the minimum correlated F-variables. The work presented in this paper is divided in two parts. The first part is devoted to develop some combinatorial identities arised from the negative binomial sampling. These identities are constructed and justified to serve important purpose, when we deal with these distributions or their characteristics. Other important results including cumulants and moments of these distributions are also given in somewhat simple forms. Second, the distributions of minimum, chisquare variable and hence the distribution of the minimum correlated F-variables are then derived within the negative binomial sampling framework. Although, multinomial theory applied to order statistics and standard transformation techniques can be used to derive these distributions, the negative binomial sampling approach provides more information regarding the nature of the relationship between the sampling vehicle and the probability distributions of these functions of chi-square variables. We also provide an algorithm to compute the percentage points of the distributions. The computation methods we adopted are exact and no interpolations are involved.

On the Autocovariance Function of INAR(1) Process with a Negative Binomial or a Poisson marginal

  • Park, You-Sung;Kim, Heeyoung
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.269-284
    • /
    • 2000
  • We show asymptotic normality of the sample mean and sample autocovariances function generated from first-order integer valued autoregressive process(INAR(1)) with a negative binomial or a Poisson marginal. It is shown that a Poisson INAR(1) process is a special case of a negative binomial INAR(1) process.

  • PDF

The UMVUE and MLE of the Tail Probability in Discrete Model

  • Woo, Jung-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1405-1412
    • /
    • 2006
  • We shall derive the UMVUE of the tail probability in Poisson, Binomial, and negative Binomial distributions, and compare means squared errors of the UMVUE and the MLE of the tail probability in each case.

  • PDF

Safety Performance Functions for Central Business Districts Using a Zero-Inflated Model (영과잉을 고려한 중심상업지구 교통사고모형 개발에 관한 연구)

  • Lee, Sang Hyuk;Woo, Yong Han
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.83-92
    • /
    • 2016
  • PURPOSES : The purpose of this study was to develop safety performance functions (SPFs) that use zero-inflated negative binomial regression models for urban intersections in central business districts (CBDs), and to compare the statistical significance of developed models against that of regular negative binomial regression models. METHODS : To develop and analyze the SPFs of intersections in CBDs, data acquisition was conducted for dependent and independent variables in areas of study. We analyzed the SPFs using zero-inflated negative binomial regression model as well as regular negative binomial regression model. We then compared the results by analyzing the statistical significance of the models. RESULTS : SPFs were estimated for all accidents and injury accidents at intersections in CBDs in terms of variables such as AADT, Number of Lanes at Major Roads, Median Barriers, Right Turn with an Exclusive Turn Lane, Turning Guideline, and Front Signal. We also estimated the log-likelihood at convergence and the likelihood ratio of SPFs for comparing the zero-inflated model with the regular model. In he SPFs, estimated log-likelihood at convergence and the likelihood ratio of the zero-inflated model were at -836.736, 0.193 and -836.415, 0.195. Also estimated the log-likelihood at convergence and likelihood ratio of the regular model were at -843.547, 0.187 and -842.631, 0.189, respectively. These figures demonstrate that zero-inflated negative binomial regression models can better explain traffic accidents at intersections in CBDs. CONCLUSIONS : SPFs that use a zero-inflated negative binomial regression model demonstrate better statistical significance compared with those that use a regular negative binomial regression model.

Diagnosis of Lead Time Demand Based on the Characteristics of Negative Binomial Distribution (음이항분포의 특성을 이용한 조달기간 수요 분석)

  • Ahn Sun-Eung;Kim Woo-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.2
    • /
    • pp.146-151
    • /
    • 2005
  • Some distributions have been used for diagnosing the lead time demand distribution in inventory system. In this paper, we describe the negative binomial distribution as a suitable demand distribution for a specific retail inventory management application. We here assume that customer order sizes are described by the Poisson distribution with the random parameter following a gamma distribution. This implies in turn that the negative binomial distribution is obtained by mixing the mean of the Poisson distribution with a gamma distribution. The purpose of this paper is to give an interpretation of the negative binomial demand process by considering the sources of variability in the unknown Poisson parameter. Such variability comes from the unknown demand rate and the unknown lead time interval.

Negative Binomial Varying Coefficient Partially Linear Models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.809-817
    • /
    • 2012
  • We propose a semiparametric inference for a generalized varying coefficient partially linear model(VCPLM) for negative binomial data. The VCPLM is useful to model real data in that varying coefficients are a special type of interaction between explanatory variables and partially linear models fit both parametric and nonparametric terms. The negative binomial distribution often arise in modelling count data which usually are overdispersed. The varying coefficient function estimators and regression parameters in generalized VCPLM are obtained by formulating a penalized likelihood through smoothing splines for negative binomial data when the shape parameter is known. The performance of the proposed method is then evaluated by simulations.

Diagnosis of Lead Time Demand Based on the Characteristics of Negative Binomial Distribution (음이항분포의 특성을 이용한 조달기간 수요 분석)

  • Ahn, Sun-Eung;Kim, Woo-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.79-84
    • /
    • 2005
  • Some distributions have been used for diagnosing the lead time demand distribution in inventory system. In this paper, we describe the negative binomial distribution as a suitable demand distribution for a specific retail inventory management application. We here assume that customer order sizes are described by the Poisson distribution with the random parameter following a gamma distribution. This implies in turn that the negative binomial distribution is obtained by mixing the mean of the Poisson distribution with a gamma distribution. The purpose of this paper is to give an interpretation of the negative binomial demand process by considering the sources of variability in the unknown Poisson parameter. Such variability comes from the unknown demand rate and the unknown lead time interval.