• Title/Summary/Keyword: Negative Gravity

Search Result 115, Processing Time 0.027 seconds

[ $\Omega<1$ ] POLAR INFLATION DRIVEN BY NEGATIVE GRAVITY

  • LA DAILE;LEE HAE SHIM
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.1
    • /
    • pp.61-65
    • /
    • 1995
  • We discuss a model4-dimensional Friedmann cosmology which may have evolved from a model of 4+D dimensions which admits spontaneous compactification of D dimensions (or N-dimensional variants of the Brans-Dicke (BD) theory). The BD parameter appearing in dimensional reduction is negative $-1<\omega<0$ (for the N-dimensional variants of the BD theory, $-1.5{\leq}{\omega})$. We find that if there had been inflationary transtion to the standard big-bang model, the Universe can undergoe a polar-type expansion during when the gravitational coupling becomes negative. The unique feature is that for the negative w, the density parameter of the post-inflationary Universe falls in a range 0<0<1 even if the Universe is geometrically flat (k = 0).

  • PDF

Gravity Variation Estimation of the 2011 Tohoku Earthquake

  • Kim, Kwang Bae;Lee, Chang Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.497-506
    • /
    • 2015
  • Gravity variations due to the 2011 Tohoku (M9.0) earthquake, which occurred at the plate boundaries near the northeastern coast of Japan, were estimated through the GRACE spherical harmonic (Stokes) coefficients derived from the CSR. About -5 μGal gravity variation by the GRACE data was found in the back-arc basin area with respect to a reference gravity model. The mean gravity variations in the back-arc basin area and the Japan Trench area were -4.4 and -3.2 μGal in order. The small negative gravity variations around the Japan Trench area can be interpreted by both crustal dilatation and the seafloor topography change in comparison with the large negative gravity variations in the back-arc basin area by co-seismic crustal dilatation of the landward plate. From the results of the gravity variations, vertical displacements generated from relatively short wavelength caused by the earthquake were estimated by use of multi-beam bathymetric measurements obtained from JAMSTEC. The maximum seafloor topography changes of about ±50 m were found at west side of the Japan Trench axis by the earthquake. The seafloor topography change by the megathrust earthquake can be considered as the results of the landslide of the seafloor throughout the landward side.

GPS Gravity Surveying for the Terrain Analysis at the Choogaryeong Rift Valley between Seoul and Cheolwon (서울-철원간 추가령곡의 지형분석을 위한 GPS 중력측정)

  • 이창호
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.281-291
    • /
    • 1999
  • This study presents the gravity data with GPS survrying and the geophysical profiles at the Choogaryeong Rift Valley. And in determing geoid by GPS measurement, survey control points (SCP) whoch built by the Republic of Korean Army are used. Seventy nine SCP and the two triangulation stations are reviewd by GPS. Digital terain model is under for terrain analysis. The analyses of the gravity surveying with GPS are as follows. The low values of the negative Bouguer anomalies represent the high elevation terrain. The Bouguer anomalies show the decrrasing trend toward the eastern part of the study area. Characteristics of free-air anomalies are related with terrain elevation. The regional gravity anomalies decreas toward the eastern part of the study area. The trends of variations are associated with the thermotectonic and geologic structure beneath the Choogaryeong Rift Valley. The most parts of the study area represent negative residual gravity anomalies due to the low dencity of sedimentary cover in the Rift Valley. There are three valleys and four mountains in the direction of NE-SW or NNE-SSW which are structured by the geological features.

  • PDF

Geologic Structure of Euiseong Sub-basin from Spectrally Correlated Geopotential Field Anomalies (포텐셜필드의 스텍트럼대비법을 이용한 의성소분지의 지구조 연구)

  • 김원균
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.217-228
    • /
    • 2000
  • We use spectral correlation method to analyze gravity and magnetic anomalies of Euiseong Sub-basin for distribution of rock facies and gelogic structures. The analysis reveals distinct polarity between gravity and magnetic anomaly correlation ; intermediate to mafic intrusives, extrusives, and the Tertiary basin shows positive gravity (+G) and positive magnetic (+M) correlation. Granitic gneiss and felsic volcanics negative gravity 9-G) and negative magnetic (-M) correlation. The Palgongsan granite, felsic to mafic extrusives and Mesozoic granites are characterized by -G and + M correlation. +G and -M correlations in the sedimentary formations are interpreted by uplift of pre-Cretaceous basement rocks . The + G and + M correlation characteristics in northeastern part of Euiseong Sub-basin including the Tertiary sedimentary basin result from the uplift of crustal materials. Major axes of spectrally correlated amomalies have mostly NW-SE or NE-SW directions. The former is due to the intrusives along strike-slip faults, and the latter which is observed in sedimentary formations is related to geological structures of basement associated new insight into the boundary between Euiseong and Milyang Sub-basin.

  • PDF

Gravity, Magnetic and VLF explorations in the ubong industrial waste landfill, Pohang (포항 유봉산업 폐기물 매립지에서의 중력, 자력, VLF 탐사)

  • 권병두
    • Economic and Environmental Geology
    • /
    • v.32 no.2
    • /
    • pp.177-187
    • /
    • 1999
  • Gravity, magnetic and VLF surveys were conducted to investigat the structural stability and hazards associated with the Ubong landfill in Pohang City, which has been built to dump industrial wastes. In 1994, the collapse of a bank happened in the 6th landfill site due to sudden heavy rain, and a large quantity of waste materials flowed out to the nearby landfill sites, factories and roads. We used $10{\times}10m$ resolution DEM data for gravity reductions. The maximum variation of the terrain effect in the survey area is about 0.5 mgal and the terrain effect is large in the vicinity of bank boundary. The Bouguer gravity anomaly map shows the effect due to the variatino of thickness and type of waste materials. The small negative gravity anomaly increases from the 9th site to the 6th site. The small negative gravity anomaly of the 9th site reflects the relatively shallow dumping depth of average 14.5 m in this site and increased density of waste materials by the repeated stabilization process of soil overlaying. The 6th site is located at the center of the former valley and rainfall and groundwater are expected to flow from south-east to north-west. Therefore, considering the previous accident of mixing waste and bank materials at the north-west boundary of the landfill, there may be some environmental problems of leakage of contaminated water and bank stability. The complex inversion technique using Simulated annealing and Marquardt-Levenberg methods was applied to calculate three-dimensional density distribution from gravity data. In the case of 6th site, it is apparent that the landfill had been dumped in four sectors. However, most part of the 9th site and showed that high magnetic industrial wastes were concentrated in the 6th site. The result of magnetic survey showing low magnetic anomalies along the boundaries of two sites is similar to that of gravity data. The VLF data also reveals four divided sectors in the 6th site, and overall anomaly trend indicates the directio of former valley.

  • PDF

Determinants of Bilateral Foreign Direct Investment Intra-ASEAN : Panel Gravity Model

  • Zebua, Hasrat Ifolala;Nasrudin, Nasrudin
    • Asian Journal of Business Environment
    • /
    • v.6 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Purpose - This paper aims to find and analyze factors that determine the flows of bilateral foreign direct investment in intra-ASEAN. It specifically focuses on the dimension of macro-economic, natural resources, human resources, and the quality of governance. Research design, data, and methodology - Data were collected from 64 bilateral relations between ASEAN nations from 2002 to 2013. Panel gravity model was utilized to find factors that determine the flows of bilateral foreign direct investment. Results - Significant factors were identified that determine the flows of bilateral foreign direct investment: GDP home country, GDP host country, real interest rate, distance, and total natural resources rent. Unexpectedly, natural resources have a negative effect. Conclusions - In a situation of increasing the flow of FDI among the countries of ASEAN, the government should control the interest rates and maintain good relations with nearby countries. The negative effect of total natural resource rents implies that ASEAN countries should not depend on their natural resources to attract foreign investments.

Model-independent test of gravity

  • L'Huillier, Benjamin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.48.3-48.3
    • /
    • 2020
  • Using redshift-space distortion, I reconstruct the growth history as a smooth function using model independent methods. Assuming general relativity, I obtain the expansion history independently of the dark energy model, and test it to the supernovae data. The results are consistent with general relativity as gravity and the cosmological constant as dark energy, although interestingly negative dark energy densities are not ruled out by the data at z~0.7 to 1.

  • PDF

Redistribution of Negative Moments in Beams Subjected to Lateral Load (횡하중에 대한 휨재의 부모멘트 재분배)

  • Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.731-740
    • /
    • 2011
  • Provisions for the redistribution of negative moments in KCI 2007 and ACI 318-08 use a method for continuous flexural members subjected to uniformly-distributed gravity load. Moment redistributions and plastic rotations in beams of reinforced concrete moment frames subjected to lateral load differ from those in continuous flexural members due to gravity load. In the present study, a quantitative relationship between the moment redistribution and plastic rotation is established for beams subjected to both lateral and gravity loads. Based on the relationship, a design method for the redistribution of negative moments is proposed based on a plastic rotation capacity. The percentage change in negative moments in the beam was defined as a function of the tensile strain of re-bars at the section of maximum negative moment, which is determined by a section analysis at an ultimate state using KCI 2007 and ACI 318-08. Span, reinforcement ratio, cracked section stiffness, and strain-hardening behavior substantially affected the moment redistribution. Design guidelines and examples for the redistribution of the factored negative moments determined by elastic theory for beams under lateral load are presented.

Ice mass balance over the polar region and its uncertainty (극지방 빙하량 변화 (ice-mass balance) 관측과 에러 분석)

  • Seo, Ki-Weon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.63-72
    • /
    • 2007
  • Current estimates of the ice-mass balance over the Greenland and the Antarctica using retrievals of time-varying gravity from GRACE are presented. Two different GRACE gravity data, UTCSR RL01 and UTCSR RL04, are used for the estimates to examine the impact of the relative accuracy of background models in the GRACE data processing for inter-annual variations of GRACE gravity data. In addition, the ice-mass balance is appraised from the conventional GRACE data, which represents global gravity, and the filtered GRACE data, which isolates the terrestrial gravity effect from GRACE gravity data. The former estimate shows that there exists similar negative trends of ice-mass balance over the Greenland from UTCSR RL01 and UTCSR RL04 while the time series from the both GRACE data over the Antarctica differ significantly from each other, and no apparent trends are observed. The result for the Greenland from the latter calculation is similar to the former estimate. However, the latter calculation presents positive trends of ice-mass balance for the Antarctica from both GRACE data. These results imply that residual oceanic geophysical signals, particularly for ocean tides, significantly corrupt the ice-mass estimate over the Antarctica as leakage error. In addition, the spatial alias of GRACE is likely to affect the ice-mass balance because the spatial spectrum of ocean tides is not conserved via GRACE sampling, and thus ocean tides contaminate terrestrial gravity signal. To minimize the alias effect, I suggest to use the combined gravity models from GRACE, SLR and polar motion.

  • PDF

Interpretation of Gravity, Magnetic and High-resolution (3.5 kHz) Seismic Data in the Powell Basin, Antarctica (남극 파월분지 지역의 중,자력 및 고해상 (3.5 KHZ) 탄성파 자료 해석)

  • Jin, YoungKeun;Kim, KyuJung;Nam, SangHeon;Kim, YeaDong;Lee, JooHan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Gravity, magnetic and high-resolution seismic surveys were carried out in the Powell Basin to examine tectonic structure and recent sedimentation on Dec. 2002. The trend of negative gravity anomalies along the spreading axis of the Powell Basin changes from northwest to east-west toward south. Both boundaries of the basin with the Antarctic Peninsula and the South Orkey micro-continent show negative magnetic anomalies, which indicates that the boundaries were continental rift areas in the initial stage of spreading. Magnitude of the magnetic anomalies corresponding to the axis of the basin is rather small compared to those of normal spreading axises in other regions. Such small anomalies would be caused by reduction of magnetic strength of oceanic crust below thick sediments due to thermal alternation. High-resolution (3.5 kHz) seismic profiles reveal that top of the South Scotia Ridge is a flat terrain coverd with thin coarse sediments by glacial erosion. Thick oceanic sediments are deposited in the central part of the basin. Little deformation in the oceanic sediments indicates that the Powell Basin has been in stable tectonic environment after spreading of the basin stopped.

  • PDF