• Title/Summary/Keyword: Negative Feature Decomposition

Search Result 6, Processing Time 0.018 seconds

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 1 - Using Convex Decomposition and Form Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 1 - 볼록입체 분할방식 및 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.

Wind loads on fixed-roof cylindrical tanks with very low aspect ratio

  • Lin, Yin;Zhao, Yang
    • Wind and Structures
    • /
    • v.18 no.6
    • /
    • pp.651-668
    • /
    • 2014
  • Wind tunnel tests are conducted to investigate the wind loads on vertical fixed-roof cylindrical tanks with a very low aspect ratio of 0.275, which is a typical ratio for practical tanks with a volume of $100,000m^3$. Both the flat-roof tank and the dome-roof tank are investigated in present study. The first four moments of the measured wind pressure, including the mean and normalized deviation pressure, kurtosis and skewness of the pressure signal, are obtained to study the feature of the wind loads. It is shown that the wind loads are closely related to the behavior of flow around the structure. For either tank, the mean wind pressures on the cylinder are positive on the windward area and negative on the sides and the wake area, and the mean wind pressures on the whole roof are negative. The roof configurations have no considerable influence on the mean pressure distributions of cylindrical wall in general. Highly non-Gaussian feature is found in either tank. Conditional sampling technique, envelope method, and the proper orthogonal decomposition (POD) analysis are employed to investigate the characteristics of wind loads on the cylinder in more detail. It is shown that the patterns of wind pressure obtained from conditional sampling are similar to the mean pressure patterns.An instantaneous pressure coefficient can present a wide range from the maximum value to the minimum value. The quasi-steady assumption is not valid for structures considered in this paper according to the POD analysis.

A New Method for Robust and Secure Image Hash Improved FJLT

  • Xiu, Anna;Kim, Hyoung-Joong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.143-146
    • /
    • 2009
  • There are some image hash methods, in the paper four image hash methods have been compared: FJLT (Fast Johnson- Lindenstrauss Transform), SVD (Singular Value Decomposition), NMF (Non-Negative Matrix Factorization), FP (Feature Point). From the compared result, FJLT method can't be used in the online. the search time is very slow because of the KNN algorithm. So FJLT method has been improved in the paper.

  • PDF

Amazon product recommendation system based on a modified convolutional neural network

  • Yarasu Madhavi Latha;B. Srinivasa Rao
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.633-647
    • /
    • 2024
  • In e-commerce platforms, sentiment analysis on an enormous number of user reviews efficiently enhances user satisfaction. In this article, an automated product recommendation system is developed based on machine and deep-learning models. In the initial step, the text data are acquired from the Amazon Product Reviews dataset, which includes 60 000 customer reviews with 14 806 neutral reviews, 19 567 negative reviews, and 25 627 positive reviews. Further, the text data denoising is carried out using techniques such as stop word removal, stemming, segregation, lemmatization, and tokenization. Removing stop-words (duplicate and inconsistent text) and other denoising techniques improves the classification performance and decreases the training time of the model. Next, vectorization is accomplished utilizing the term frequency-inverse document frequency technique, which converts denoised text to numerical vectors for faster code execution. The obtained feature vectors are given to the modified convolutional neural network model for sentiment analysis on e-commerce platforms. The empirical result shows that the proposed model obtained a mean accuracy of 97.40% on the APR dataset.

The Roles of Electrolyte Additives on Low-temperature Performances of Graphite Negative Electrode (전해액 첨가제가 흑연 음극의 저온특성에 미치는 영향)

  • Park, Sang-Jin;Ryu, Ji-Heon;Oh, Seung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • SEI (solid electrolyte interphase) layers are generated on a graphite negative electrode from three different electrolytes and low-temperature ($-30^{\circ}C$) charge/discharge performance of the graphite electrode is examined. The electrolytes are prepared by adding 2 wt% of vinylene carbonate (VC) and fluoroethylene carbonate (FEC) into a standard electrolyte solution. The charge-discharge capacity of graphite electrode shows the following decreasing order; FEC-added one>standard>VC-added one. The polarization during a constant-current charging shows the reverse order. These observations illustrate that the SEI film resistance and charge transfer resistance differ according to the used additives. This feature has been confirmed by analyzing the chemical composition and thickness of three SEI layers. The SEI layer generated from the standard electrolyte is composed of polymeric carbon-oxygen species and the decomposition products ($Li_xPF_yO_z$) of lithium salt. The VC-derived surface film shows the largest resistance value even if the salt decomposition is not severe due to the presence of dense film comprising C-O species. The FEC-derived SEI layer shows the lowest resistance value as the C-O species are less populated and salt decomposition is not serious. In short, the FEC-added electrolyte generates the SEI layer of the smallest resistance to give the best low-temperature performance for the graphite negative electrode.