• Title/Summary/Keyword: Needle-grain

Search Result 30, Processing Time 0.029 seconds

The Utilization of Yun Chun Andalusite as a Raw Material for High Alumina Refractories(III) -Effect of Impurities on the Mulltization- (고 알루미나질 내화물 원료로서 연천산 홍주석의 이용에 관한 연구(III) -홍주석의 물라이트화에 미치는 불순물의 영향-)

  • Ahn, Young-Pil;Choi, Long
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.3
    • /
    • pp.27-32
    • /
    • 1974
  • The effect of impurities of andalusite on the morphology of the crystallization of mullite was investigated. The raw, concentrated and purified andalusite were fired at 145$0^{\circ}C$. and 150$0^{\circ}C$. Each of three grades of andalusite was examined in a scanning electron microscope, X-ray diffractometer and etc. The raw andalusite showed deeply etched textures and prismatic crystals which are estimated to be an average of 2.5u in width and 15u in length. Concentrated andalusite showed poorly formed and elongated prismatic crystals. Purified andalusite showed condensed needle-like crystals which are estimated to be an average of 0.4$\mu$ in width and 2.0$\mu$ in length, but at the boundary of the original andalusite grain, prismatic crystals were seen. It is supposed that the purified andalusite is able to utilize as a raw material for high alumina refractories with refractoriness S.K. 38.

  • PDF

A Study on the Verification of an Indoor Test of a Portable Penetration Meter Using the Cone Penetration Test Method (자유낙하 콘관입시험법을 활용한 휴대용 다짐도 측정기의 실내시험을 통한 검증 연구)

  • Park, Geoun Hyun;Yang, An Seung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2019
  • Soil compaction is one of the most important activities in the area of civil works, including road construction, airport construction, port construction and backfilling construction of structures. Soil compaction, particularly in road construction, can be categorized into subgrade compaction and roadbed compaction, and is significant work that when done poorly can serve as a factor causing poor construction due to a lack of compaction. Currently, there are many different types of compaction tests, and the plate bearing test and the unit weight of soil test based on the sand cone method are commonly used to measure the degree of compaction, but many other methods are under development as it is difficult to secure economic efficiency. For the purpose of this research, a portable penetration meter called the Free-Fall Penetration Test (FFPT) was developed and manufactured. In this study, a homogeneous sample was obtained from the construction site and soil was classified through a sieve analysis test in order to perform grain size analysis and a specific gravity test for an indoor test. The principle of FFPT is that the penetration needle installed at the tip of an object put into free fall using gravity is used to measure the depth of penetration into the road surface after subgrade or roadbed compaction has been completed; the degree of compaction is obtained through the unit weight of soil test according to the sand cone method and the relationship between the degree of compaction and the depth of the penetration needle is verified. The maximum allowable grain size of soil is 2.36 mm. For $A_1$ compaction, a trend line was developed using the result of the test performed from a drop height of 10 cm, and coefficient of determination of the trend line was $R^2=0.8677$, while for $D_2$ compaction, coefficient of determination of the trend line was $R^2=0.9815$ when testing at a drop height of 20 cm. Free fall test was carried out with the drop height adjusted from 10 cm to 50 cm at increments of 10 cm. This study intends to compare and analyze the correlation between the degree of compaction obtained from the unit weight of soil test based on the sand cone method and the depth of penetration of the penetration needle obtained from the FFPT meter. As such, it is expected that a portable penetration tester will make it easy to test the degree of compaction at many construction sites, and will lead to a reduction in time, equipment, and manpower which are the disadvantages of the current degree of compaction test, ultimately contributing to accurate and simple measurements of the degree of compaction as well as greater economic feasibility.

Fabrication High Covered and Uniform Perovskite Absorbing Layer With Alkali Metal Halide for Planar Hetero-junction Perovskite Solar Cells

  • Lee, Hongseuk;Kim, Areum;Kwon, Hyeok-chan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.427-427
    • /
    • 2016
  • Organic-inorganic hybrid perovskite have attracted significant attention as a new revolutionary light absorber for photovoltaic device due to its remarkable characteristics such as long charge diffusion lengths (100-1000nm), low recombination rate, and high extinction coefficient. Recently, power conversion efficiency of perovskite solar cell is above 20% that is approached to crystalline silicon solar cells. Planar heterojunction perovskite solar cells have simple device structure and can be fabricated low temperature process due to absence of mesoporous scaffold that should be annealed over 500 oC. However, in the planar structure, controlling perovskite film qualities such as crystallinity and coverage is important for high performances. Those controlling methods in one-step deposition have been reported such as adding additive, solvent-engineering, using anti-solvent, for pin-hole free perovskite layer to reduce shunting paths connecting between electron transport layer and hole transport layer. Here, we studied the effect of alkali metal halide to control the fabrication process of perovskite film. During the morphology determination step, alkali metal halides can affect film morphologies by intercalating with PbI2 layer and reducing $CH3NH3PbI3{\cdot}DMF$ intermediate phase resulting in needle shape morphology. As types of alkali metal ions, the diverse grain sizes of film were observed due to different crystallization rate depending on the size of alkali metal ions. The pin-hole free perovskite film was obtained with this method, and the resulting perovskite solar cells showed higher performance as > 10% of power conversion efficiency in large size perovskite solar cell as $5{\times}5cm$. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectrometry (ICP-OES) are analyzed to prove the mechanism of perovskite film formation with alkali metal halides.

  • PDF

A Basic Study on the Attachment Process of Lightning Leader to Ground (낙뢰 리더의 대지부착과정에 대한 기초적 연구)

  • Yoo, Yang-Woo;Kim, Seung-Min;Kim, You-Ha;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.82-88
    • /
    • 2014
  • This paper presents the results of model tests for the attachment process of lightning leader to ground which is one of poorly understood processes of cloud-to-ground lightning discharges. In order to simulate the attachment process of lightning leader to ground, we investigated the discharge characteristics of air gap between the tip of needle-shaped electrode and the soil surface as a parameter of moisture content in soils when the positive and negative $1.2/50{\mu}s$ lightning impulse voltages are applied. The breakdown voltage and the discharge light were observed. As a result, the attachment processes of lightning leader to ground are strongly dependent on the grain size and the moisture content of soils. The time to breakdown was shortened with increasing the magnitude of incident impulse voltages. The delay time from application of the highest voltage to breakdown in sand is shortened with increasing the moisture content. The delay time from application of the voltage to breakdown in gravel varied from about $0.5{\mu}s$ to several ${\mu}s$. As the moisture content in soil increases, the breakdown voltages are decreased and the breakdown voltage versus time to breakdown curves are shifted toward the lower side. The results obtained in this work are similar to those for non-uniform air gap stressed by lightning impulse voltages.

The Dielectrical Properties of $(1-x)(Sr_a.Pb_b.Ca_c)TiO_3-xB_i2O_3.TiO_2$ system affected by $Bi_2O_3.3TiO_2$ amounts and $MnO_2$ ($(1-x)(Sr_a.Pb_b.Ca_c)TiO_3-xB_i2O_3.TiO_2$계에서의 $Bi_2O_3.3TiO_2$$MnO_2$첨가에 따른 유전특성에 관한 연구)

  • 박상도;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.123-130
    • /
    • 1997
  • In this study, (Sr.Pb.Ca)TiO3-Bi2O3.3TiO2(SPCT) systems were investigated to develop a new material which has a high dielectric constant, a low dielectric loss and a small TCC(Temperature Coefficient of Capa-citance), and are suitable for high voltage applications as a function of the additions of Bi2O3.3TiO2 from 5 mol.% to 9 mol.%. The result obtained from our investigation showed that up to 6 mol.% Bi2O3.3TiO ad-dition the dielectric constant increased and it deteriorated at higher concentrations with increasing amount of the acicular grains. As a result of some dopants (SiO2, Nb2O3, MnO2) addition to SPCT, the specimens with MnO2 showed good dielectric properties. The dielectric constant decreased, but the TCC was improved with the addition of MnO2 from 0.15 wt.% to 0.45 wt. %.

  • PDF

Optimum Operating Conditions of a Vacuum Nozzle Seeder (진공노즐식 파종기의 최적 작동조건)

  • 민영봉;김성태;정태상
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.463-470
    • /
    • 2000
  • For maximum seeding efficiency of a nozzle type seeder, the performance of the nozzle should be considered sufficiently. This study was carried out to investigate the optimum operating conditions of a seeder attached the vacuum nozzle which was modified syringe needle acting on the plug seedling tray and the seed plate. Such operating factors as the hole diameter of the nozzle (d), the distance from the nozzle tip to the bottom plate of seed hopper(D) the absorbing air pressure of the nozzle tip(P) the bounding height of seed from the vibrated bottom plate of seed hopper and the seeding speed were selected based on the weight of a grain of seed(W). The treated materials were pepper seed as the flat type, cucumber seed as the oval type and radish seed as the spherical type. The optimum operating conditions of the experimental seeder were revealed as follows: 1. The height of the seed bounding from the bottom plate of seed hopper and the distance from nozzle tip to bounded seed were 5 mm and 0.5 mm at all seeds. The hole diameter of the nozzle and the absorbing pressure for pepper seed, cucumber seed and radish seed was 0.45 mm, 0.65 mm. 0.65mm and 39.2 kPa, 88.3 kPa, 58.8 kPa, respectively. 2. The absorbing pressure P was represented as P=η.4W/$\pi$d$^2$ where η was 100. The seeding speed using a 128 cell tray was 2.4 cm/s which was same transfer as 2.5 trays per minute. 3. The maximum seeding rate in case of the pepper seed was 97% the cucumber seed was 95% and the radish seed was 100% under the optimum operating conditions of the seeder.

  • PDF

Effect of Ca Addtion on Microstructure and Mechanical Properties of Mg-11Li-3Zn-1Sn-0.4Mn Based Alloys (Mg-11Li-3Zn-1Sn-0.4Mn 마그네슘 합금의 Ca 첨가에 따른 미세조직 및 기계적 특성평가)

  • Kim, Jung-Han;Kim, Yong-Ho;Yoo, Hyo-Sang;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.269-273
    • /
    • 2015
  • The effect of adding Ca on the microstructural and mechanical properties of as-cast Mg-11Li-3Zn-1Sn(wt%) alloys were investigated. Mg-11Li-3Zn-1Sn-0.4Mn with different Ca additions (0.4, 0.8, 1.2 wt%) were cast under an $SF_6$ and $Co_2$ atmosphere at $720^{\circ}C$. The cast billets were homogenized at $400^{\circ}C$ for 12h and extruded at $200^{\circ}C$. The microstructural and mechanical properties were analyzed by OM, XRD, SEM, and tensile tests. The addition of Ca to the Mg-11Li-3Zn-1Sn-0.4Mn alloy resulted in the formation of $Ca_2Mg_6Zn_3$, MgSnCa intermetallic compound. By increasing Ca addition, the volume fraction and size of $Ca_2Mg_6Zn_3$ with needle shape were increased. This $Ca_2Mg_6Zn_3$ intermetallic compound was elongated to the extrusion direction and refined to fine particles due to severe deformation during hot extrusion. The elongation of the 0.8 wt% Ca containing alloy improved remarkably without reduction strength due to the formation of fine grain and $Ca_2Mg_6Zn_3$ intermetallic compounds by Ca addition. It is probable that fine and homogeneous $Ca_2Mg_6Zn_3$ intermetallic compounds played a significant role in the increase of mechanical properties.

Phase Identification of the Interfacial Reaction Product of $SiC_p/Al$ Composite Using Convergent Beam Electron Diffraction Technique (수렴성 빔 전자회절법을 이용한 $SiC_p/Al$ 복합재에서의 계면 생성물의 상분석)

  • Lee, Jung-Ill;Lee, Jae-Chul;Suk, Hyun-Kwang;Lee, Ho-In
    • Applied Microscopy
    • /
    • v.26 no.1
    • /
    • pp.95-104
    • /
    • 1996
  • A comprehensive methodology to characterize the interfacial reaction products of $SiC_p/2024$ Al composites is introduced on the basis of the experimental results obtained using XRD, SEM and TEM. XRD performed on the electrochemically extracted $SiC_p$ and bulk $SiC_p/2024$ Al composite have shown that the interfacial reaction products consist of $Al_{4}C_3$ having hexagonal crystallographic structure, pure eutectic Si having diamond cubic crystallographic structure, and $CuAl_2$, having tetragonal crystalloraphic structure, respectively. According to the images observed by SEM, $Al_{4}C_3$, which has been reported to have needle shape, has a hexagonal platelet-shape and eutectic Si is found to have a dendritic shape. In addition eutectic $CuAl_2$, was observed to form near interface and/or along the grain boundaries. In order to confirm the results obtained by XRD, the primitive cell volume and reciprocal lattice height of such interfacial reaction products were calculated using the data obtained from convergent beam electron diffraction (CBED) patterns, and then compared with theoretical values.

  • PDF

Full-scale investigations into installation damage of nonwoven geotextiles

  • Sardehaei, Ehsan Amjadi;Mehrjardi, Gholamhosein Tavakoli;Dawson, Andrew
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.81-95
    • /
    • 2019
  • Due to the importance of soil reinforcement using geotextiles in geotechnical engineering, study and investigation into long-term performance, design life and survivability of geotextiles, especially due to installation damage are necessary and will affect their economy. During installation, spreading and compaction of backfill materials, geotextiles may encounter severe stresses which can be higher than they will experience in-service. This paper aims to investigate the installation damage of geotextiles, in order to obtain a good approach to the estimation of the material's strength reduction factor. A series of full-scale tests were conducted to simulate the installation process. The study includes four deliberately poorly-graded backfill materials, two kinds of subgrades with different CBR values, three nonwoven needle-punched geotextiles of classes 1, 2 and 3 (according to AASHTO M288-08) and two different relative densities for the backfill materials. Also, to determine how well or how poorly the geotextiles tolerated the imposed construction stresses, grab tensile tests and visual inspections were carried out on geotextile specimens (before and after installation). Visual inspections of the geotextiles revealed sedimentation of fine-grained particles in all specimens and local stretching of geotextiles by larger soil particles which exerted some damage. A regression model is proposed to reliably predict the installation damage reduction factor. The results, obtained by grab tensile tests and via the proposed models, indicated that the strength reduction factor due to installation damage was reduced as the median grain size and relative density of the backfill decreases, stress transferred to the geotextiles' level decreases and as the as-received grab tensile strength of geotextile and the subgrades' CBR value increase.

A study on eating habits of the Buddhist Priesthood in Seoul and Kyongnam -I. Dietary pattern and special food- (서울, 경남지역 승가(僧家)의 식생활(食生活)에 관한 조사연구 -I. 식이패턴과 특별식 중심으로-)

  • Cho, Eun-Ja;Park, Sun-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.9 no.2
    • /
    • pp.111-118
    • /
    • 1994
  • The purpose of this study was to understand dietaty culture of the Buddhist priesthood in Seoul and Kyungnam. This survey was carried out through questionnaries and the subjects were 26 temples and hermitages. The results of this study can be summarized as follow: 1. Most of the Buddhist priesthood takes meal three times for a day regularly. The substitution food was used mainly rice gruel, fruits, powder of roasted grain, kinds of cookie and confectionary, kinds of steamed dish and milk. 2. The seasoning substances were used necessarily soy sauce, soybean paste, salt and sesame, sesame oil, vegetable oil, and used rarely Jepi powder, red powder, chinese pepper and M.S.G. 3. Eating table was used chiefly for Buddhist priethood and a vistor, and tea and cookie, D'ock, noodle were used often. Event and party foods of temple were used Bibimbab, Ogokbab, Yagbab, D'ockguk, soybean of noodle. 4. Offering food to Buddha was used to Five-offered to Buddha(香, 燈, 茶, 果, 米) primarily and religious food was used scarcely. 5. Special food was used D'ock, hand made cookie and confectionaries, kinds of chinish medicine tea and pine needle tea. Injulmi and Julpyun were prepared most frequently, and used to mixed rice flour with mugwort now and then. Coating and filling powders for D'ock were used to red bean, mung bean and soy bean. Kinds of hand made cookie were Yagkwa, Kangjeong, Dasik, Jungkwa and Yangeng. Beverages were thick hot beverage, kinds of leaf tea, chilled beverage, Yaksu mixed with soy sauce and bamboo salt, kinds of chinese medicine tea, milk and milk products and pine needles tea. 6. Preserved foods were used edible mountain herbs and seaweeds in drying and frying.

  • PDF