• Title/Summary/Keyword: Neck stability

Search Result 85, Processing Time 0.019 seconds

Comparison of between Upper Thoracic Manipulation and Cervical Stability Training on Range of Motion and Neck Disability in Patients with Chronic Mechanical Neck Pain (상부등뼈도수교정과 목뼈부위안정화운동이 만성 목뼈부위 기계학적 통증 환자의 관절가동범위와 장애지수에 미치는 효과 비교)

  • Lee, Byoung-Kwon;Yang, Jin-Mo;Kang, Keung-Hwan
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.2
    • /
    • pp.35-45
    • /
    • 2015
  • PURPOSE: The aim of this study is to investigate how upper thoracic manipulation and cervical stability training affects cervical range of motion and neck disability index of patients with chronic mechanical neck pain. METHODS: 30 patients with chronic mechanical neck pain, and randomly divided into the upper thoracic manipulation and the cervical stability training group. Upper thoracic manipulation group was conducted to the upper thoracic manipulation, and cervical stability training was conducted to the cervical stability training. Intervention period was 6 weeks, and 3 sessions, each of which was run for 5~10 minutes. The subjects were measured neck range of motion before and after intervention by electro-goniometer. Neck disability index was used to measure neck disability index Korean version. RESULTS: Comparison within groups, there were significant difference in neck range of motion before and after intervention, and Neck disability index significantly reduced in the cervical stability training group. The comparison between groups, there were no significant difference in neck range of motion and neck disability index. CONCLUSION: Upper thoracic manipulation and cervical stability training to the patients with chronic neck pain was helpful to improve neck range of motion and cervical stability training was helpful to improve neck disability index.

Effect of Deep Neck Flexor Performance on the Stability of the Cervical Spine in Subject With and Without Neck Pain

  • Kwon, Oh-Yun;Lee, Won-Hwee;Jung, Sung-Dae;Kim, Si-Hyun;Jung, Do-Heon
    • Physical Therapy Korea
    • /
    • v.18 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This study compared the stability of the cervical spine according to the presence of neck pain and deep neck flexor performance. Thirty subjects with neck pain, and thirty subjects without neck pain were recruited for this study. The Cranio-cervical flexion (CCF) test was applied using a pressure biofeedback unit to classify the subjects into four subgroups; no cervical pain and good deep neck flexor performance (NG group), no cervical pain and poor deep neck flexor performance (NP group), cervical pain and good deep neck flexor performance (PG group), and cervical pain and poor deep neck flexor performance (PP group). The head sway angle was measured using a three-dimensional motion analysis system. A 3-kg weight was used for external perturbation with the subject sitting in a chair in the resting and erect head positions with voluntary contraction of the deep neck flexors. A one-way analysis of variance (ANOVA) was performed with a Bonferroni post hoc test. The deep neck flexor performance differed significantly among the four groups (p<.05). The NG group had significantly greater deep neck flexor performance than NP and PP groups. The stability of the cervical spine also differed significantly among the four groups in the resting head position (p<.05). The head sway angle was significantly smaller in NG group as compared with the other groups. The PP group had the greatest head sway angle in the resting head position. However, there was no significant difference in the stability of the cervical spine among the groups in the erect head position with voluntary contraction of deep neck flexors (p=.57). The results of this study suggest that the deep neck flexor performance is important for maintaining the stability of cervical spine from external perturbation.

Effect of pain on cranio-cervico-mandibular function and postural stability in people with temporomandibular joint disorders

  • Mehmet Micoogullari;Inci Yuksel;Salih Angin
    • The Korean Journal of Pain
    • /
    • v.37 no.2
    • /
    • pp.164-177
    • /
    • 2024
  • Background: Neck and jaw pain is common and is associated with jaw functional limitations, postural stability, muscular endurance, and proprioception. This study aimed to investigate the effect of jaw and neck pain on cranio-cervico-mandibular functions and postural stability in patients with temporomandibular joint disorders (TMJDs). Methods: Fifty-two patients with TMJDs were included and assessed using Fonseca's Questionnaire and the Helkimo Clinical Dysfunction Index. An isometric strength test was performed for the TMJ depressor and cervical muscles. The TMJ position sense (TMJPS) test and cervical joint position error test (CJPET) were employed for proprioception. Total sway degree was obtained for the assessment of postural stability. Deep neck flexor endurance (DNFE) was assessed using the craniocervical flexion test. The mandibular function impairment questionnaire (MFIQ) was employed to assess mandibular function, and the craniovertebral angle (CVA) was measured for forward head posture. Results: Jaw and neck pain negatively affected CVA (R2 = 0.130), TMJPS (R2 = 0.286), DNFE (R2 = 0.355), TMJ depressor (R2 = 0.145), cervical flexor (R2 = 0.144), and extensor (R2 = 0.148) muscle strength. Jaw and neck pain also positively affected CJPET for flexion (R2 = 0.116) and extension (R2 = 0.146), as well as total sway degree (R2 = 0.128) and MFIQ (R2 = 0.230). Conclusions: Patients with painful TMJDs, could have impaired muscle strength and proprioception of the TMJ and cervical region. The jaw and neck pain could also affect postural stability, and the endurance of deep neck flexors as well as mandibular functions in TMJDs.

Effects of Abnormal Neck Posture on Postural Stability (목 자세에 따른 선 자세에서의 신체균형능력 평가)

  • Park, Sung Ha
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.16-23
    • /
    • 2018
  • Postural instability can increase the likelihood of hazardous slip and fall accidents in workplaces. The present study intended to extend understanding of the effect of abnormal neck posture on postural control during quiet standing. The effect of body fatigue on the postural control was also of primary concern. Twelve healthy undergraduate students volunteered to participate in the experiment. Standing on a force platform with the neck neutral, flexed, extended, or rotated, subjects' center of pressures (COP) were measured under the two levels of body fatigue. For the fatigue condition, Subjects exercised in a treadmill to meet the predetermined level of body fatigue. Analyzing the position coordinates of COPs, the length of postural sway path was assessed in both medio-lateral (ML) axis and anterior-posterior (AP) axis. Results showed that, in AP direction, neck extension or rotation significantly increased the sway length as compared with neck neutral. Neck extension led to greater sway length compared to neck rotation. Neck flexion did not differ from neck neutral. The sway length in the AP direction also became significantly larger as the body fatigue accumulated after treadmill exercise. In ML direction, as compared to neutral posture, the neck extension, flexion, or rotation did not significantly affect the length of postural sway path. However, the sway length seemed to increase marginally with the neck extended during the fatigued condition. This study demonstrates that abnormal neck posture may interfere with postural control during standing. The ability to maintain postural stability decreases significantly with the neck extended or rotated. Body fatigue leads to postural instability further.

Effects of Neck and Trunk Stabilization Exercise on Balance in Older Adults

  • Song, Gui-bin;Park, Eun-Cho
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.4
    • /
    • pp.221-226
    • /
    • 2016
  • Purpose: This study was conducted to evaluate the effects of neck and trunk stabilization exercise on static and dynamic balance in older adults. Methods: A total of 30 older adults participated in this study. Participants were randomly assigned to the neck and trunk stabilization exercise group (NTSG) (n=15) or the trunk stabilization exercise group (TSG) (n=15). The NTSG performed a trunk stabilization exercise added to a neck stabilization exercise that included biofeedback. Both groups received training for 30 minutes per day three times per week for eight weeks. The anterior, posterior limit of stability and sway length was used to measure static balance ability, while the timed up and go (TUG) test was used to measure dynamic balance ability. Results: Participants showed significant differences in sway length, anterior limit of stability, posterior limit of stability, and the results of the TUG test between their pre- and post mediation evaluations (p<0.05). The NTSG showed a more significant increase than the TSG (p<0.05). Conclusion: According to the results of this study, both exercises effectively improved static and dynamic balance ability. However, the neck and trunk stabilization exercise is more efficient for increasing the balance ability of older adults.

The Effects of Neck Stabilization Exercise and Proprioceptive Neuromuscular Facilitation on Neck Alignment, NDI, and Static Balance in Adults with Forward-head Posture in a Sitting Position (앉은 자세에서의 목안정화운동과 PNF 목 패턴이 거북목증후군 성인의 목 정렬, 목 장애지수 및 정적균형에 미치는 영향)

  • Song, Gui-Bin;Kim, Jwa-Jun;Kim, Kyu-Ryeong;Kim, Geun-Young
    • PNF and Movement
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the effects of neck stabilization exercise with PNF for neck alignment, neck disability index, and sitting balance in adults with forward-head posture. Methods: Forty participants were randomly assigned to two groups. Patients in the neck stabilization exercise group (NSG, n = 20) and the proprioceptive neuromuscular facilitation neck pattern exercise group (PNFG, n = 20) were studied 30 minutes a day three times a week for four weeks. Outcomes were measured using cranial vertical angle (CVA), the Korean version of the neck disability index (KNDI), anterior limit of stability (ALOS), and posterior limit of stability (PLOS) before and after the intervention period. Results: There were significant effects in the CVA and the KNDI of both groups pre- and post-intervention. There were significant effects in ALOS and PLOS in the PNFG pre- and post-intervention compared with the NSG. Conclusion: The results of this study suggest that PNF with neck exercise could be beneficial to the static balance of adults with forward-head posture.

Effects of Cervical Stabilization Exercise Using Pressure Biofeedback on Neck Pain, Forward Head Posture and Acoustic Characteristics of Chronic Neck Pain Patients with Forward Head Posture (앞쪽머리자세가 있는 만성 목통증 환자에게 압력 바이오피드백 장비를 이용한 목안정화운동 적용이 목통증과 앞쪽머리자세, 음향학적 특성 변화에 미치는 효과)

  • Kim, Gi-Chul;HwangBo, Pil-Neo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.1
    • /
    • pp.121-129
    • /
    • 2019
  • PURPOSE: This study was conducted to measure the effects of cervical stabilization exercises on neck pain, forward head posture, and the acoustic characteristics frequency and amplitude modulation of patients with chronic neck pain caused by forward head posture using pressure biofeedback. METHODS: 20 patients with chronic neck pain and voice disorders presenting at the S Exercise Center in Daegu, Korea, were included in the study. A cervical stabilization exercise program of 50 minutes per session was performed three times a week for eight weeks. Pressure biofeedback was utilized to determine the impact of the exercises on neck pain, forward head posture, and the acoustic characteristics of the patients. The measurements were taken prior to and after the intervention to determine any changes. RESULTS: A significant improvement in neck pain, craniovertebral angle and the acoustic characteristics frequency and amplitude modulation of the patients was demonstrated after the intervention (p<.05). CONCLUSION: Cervical stabilization exercises were demonstrated to have a significantly positive effect on neck pain, forward head posture, and vocalization stability in patients with chronic neck pain in the current study based on measurements taken using a pressure biofeedback system. This indicates that an improvement in forward head posture positively impacts postural stability and vocalization. Future studies investigating a greater range of interventions designed to improve neck pain and acoustical effects in patients with chronic neck pain and forward head posture patients are warranted.

Comparison between McKenzie Stretch Exercise and Scapula Stability Exercise on Neck Muscle Activation in the Forward Head Posture (전방머리자세에서 목근육 근활성도에 대한 맥켄지 신장운동과 어깨 안정화운동의 효과 비교)

  • Bae, Wonsik;Lee, Keoncheol;Kim, Yoonhwan
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.1
    • /
    • pp.13-20
    • /
    • 2016
  • Purpose : The purpose of this study was to compare the effect of exercise on the neck muscles activities between scapular stability and McKenzie stretch exercise in the forward head posture subjects. Method : After measuring cervical alignment using the Global Posture System, 20 volunteers with forward head posture posture were selected and divided into two groups. The experimental group A(n=15) and Experimental group B(n=15) participated in respectively and McKenzie neck stretching exercise, three times per week for 4 weeks. The scapular stabilization exercise program was comprised middle and lower trapezius strength exercises and the stretching exercise program was comprised levator scapulae and upper trapezius stretching exercise. The activities of the muscles of the posterior neck was then measured using electromyography. Result : After the intervention, there was significant difference of a electromyography activity changes between the pre-test and post-test in the experimental group. Conclusion : This study showed that both scapular stabilization and McKenzie neck stretching exercises are more effective for reducing neck muscles activities.

THE EFFECT OF PREPARATION PROCEDURE ON IMPLANT-ABUTMENT JOINT STABILITY (임플랜트 지대주의 삭제과정이 결합부 안정성에 미치는 영향)

  • Lee Jang-Wook;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.662-670
    • /
    • 2005
  • Statement of problem: Little is known about the effect of abutment preparation procedure on do-torque values in different implant platform and the relationship of final do-torque values with different implant platform size. Purpose: This study evaluated the effect of abutment preparation procedure on do-torque values in different implant platform and the relationship of final do-torque values with different implant platform size. Material and method: Six ITI implants (2 narrow-neck implants, 2 regular-neck implants, 2 wide-neck implants) and six Branemark implants (2 narrow platforms, 2 regular platforms, 2 wide platforms) were embedded in each acrylic resin block with epoxy resin. Eighteen $synOcta^(R)$ abutments (6 narrow-neck implant-abutments, 6 regular-neck implant-abutments, 6 wide-neck implant-abutments) and eighteen esthetic abutments (6 narrow platform-abutments, 6 regular platform-abutments, 6 wide platform-abutments) were tightened to each implant with digital torque gauge. Initial do-torque values were measured using digital torque gauge. After preparation of abutments, Final do-torque values were measured with digital torque gauge. Results and conclusion: 1. Screws loosening or abutments motion were not detected in all experimental group, but some scratches of implant-abutment joints were detected in all group 2. Reduction ratios of final do-torque values were greater than initial do-torque values in all measured group, except in narrow-neck implant-abutment group (p<0.05). 3. Reduction ratios of final do-torque values in wide-neck implant-abutment group were greater than regular-neck implant-abutment group (p<0.01). 4. The greatest standard deviation value was detected in wide platform group in both implant systems.

Biomechanical Evaluation of the Neck and Shoulder When Using Pillows with Various Inner Materials

  • Kim, Jung-Yong;Park, Ji-Soo;Park, Dae-Eun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.339-347
    • /
    • 2011
  • Objective: The purpose of this study was to evaluate of various material of pillows by using biomechanical variables such as the cervical stability, head pressure distribution, and muscle activity. Method: Eight subjects participated in the experiment. Three different materials such as polyester sponge, memory foam and the buckwheat shell used for Korean traditional pillow were tested. Electro-goniometer, six channels of electromyography(EMG), ten channels of the head pressure sensors were used to measure the biomechanical responses. Surface electrodes were attached to the right/left semispinals capitis(RSC, LSC), the right/left sternocleidomastoid(RSM, LSM), the right/left upper trapezius(RUT, LUT). The cervical stability was evaluated by the angle deviated from the standing neck position. The head pressure distribution was evaluated by the pressure per unit area recorded on the sensors and the intensity of peak pressure. Electromyography(EMG) data were analyzed by using root mean square(RMS) and mean power frequency(MPF). Results: The buckwheat shell material showed a higher stability in the cervical spine then the other pillows during spine position. In terms of head pressure distribution, the memory form indicated the lowest pressure at supine position, buckwheat shell material indicated the lowest pressure during lying down to side, and polyester cushion recorded the highest pressure at all postures. Conclusion: The buckwheat shell material has a biomechanical advantage to maintain a healthy neck angle and reduce the pressure on the head, which means the buckwheat shell is a potential material for ergonomic pillow design. The pillow with memory form showed second best biomechanical performance in this study. Application: The shape of the buckwheat shell pillow and the characteristics of materials can be used to design the pillow preventing neck pain and cervical disk problems.