• Title/Summary/Keyword: Neck sensor

Search Result 55, Processing Time 0.023 seconds

Health Monitoring of Livestock using Neck Sensor based on Machine Learning (목걸이형 센서를 이용한 머신러닝 기반 가축상태 모니터링)

  • Lee, Woongsup;Park, Seongmin;Ban, Tae-Won;Kim, Seong Hwan;Ryu, Jongyeol;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1421-1427
    • /
    • 2018
  • Due to the rapid development of Internet-of-Things technology, different types of smart sensors are now devised and deployed widely. These smart sensors are now used in animal husbandry which was traditionally managed by the experience of farmers, such that wearable sensors for livestock, and the smart farm which is equipped with multiple sensors are utilized to increase the efficiency of livestock management. Herein, we consider a scheme in which the body temperature and the level of activity are measured by smart sensor which is attached to the neck of dairy cattle and the health condition is monitored based on collected data. Especially, we find that the estrous of dairy cattle which is one of most important metric in milk production, can be predicted with high precision using various machine learning techniques. By utilizing the proposed prediction scheme, estrous of cattle can be detected immediately and this can improve the efficiency of cattle management.

Stress Analysis of Plastic Sprint (플라스틱 발목보조기의 응력해석 연구)

  • Kim, Myung-Hoe;Lee, Chang-No;Jang, Dae-Jin;Kou, Heung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.888-892
    • /
    • 2003
  • This study was tested for the bending stress analysis of Experimental stress analysis on various ankle foot orthoses(AFOs) was fulfilled. Stress was measured by Strain gages which were attached on 8 region in AFOs Results revealed that the peak compressive/tensile stress in the orthoses occured in the lateral region of neck. The Stress Analysis system was made by the electronic oscilloscope, strain gage sensors, amplifier, A/D converter, PC with C program It will be able to using the important data in splint design. Selected AFOs were some different materials but all have same shape except one type(orthosis with joint). C program Is used for managing data. Thus lateral side of the neck region is failed easily.

  • PDF

Test-retest Reliability and Concurrent Validity of a Headphone and Necklace Posture Correction System Developed for Office Workers

  • Gyu-hyun Han;Chung-hwi Yi;Seo-hyun Kim;Su-bin Kim;One-bin Lim
    • Physical Therapy Korea
    • /
    • v.30 no.3
    • /
    • pp.174-183
    • /
    • 2023
  • Background: Office workers experience neck or back pain due to poor posture, such as flexed head and forward head posture, during long-term sedentary work. Posture correction is used to reduce pain caused by poor posture and ensures proper alignment of the body. Several assistive devices have been developed to assist in maintaining an ideal posture; however, there are limitations in practical use due to vast size, unproven long-term effects or inconsistency of maintaining posture alignment. We developed a headphone and necklace posture correction system (HANPCS) for posture correction using an inertial measurement unit (IMU) sensor that provides visual or auditory feedback. Objects: To demonstrate the test-retest reliability and concurrent validity of neck and upper trunk flexion measurements using a HANPCS, compared with a three-dimensional motion analysis system (3DMAS). Methods: Twenty-nine participants were included in this study. The HANPCS was applied to each participant. The angle for each action was measured simultaneously using the HANPCS and 3DMAS. The data were analyzed using the intraclass correlation coefficient (ICC) = [3,3] with 95% confidence intervals (CIs). Results: The angular measurements of the HANPCS for neck and upper trunk flexions showed high intra- (ICC = 0.954-0.971) and inter-day (ICC = 0.865-0.937) values, standard error of measurement (SEM) values (1.05°-2.04°), and minimal detectable change (MDC) values (2.92°-5.65°). Also, the angular measurements between the HANPCS and 3DMAS had excellent ICC values (> 0.90) for all sessions, which indicates high concurrent validity. Conclusion: Our study demonstrates that the HANPCS is as accurate in measuring angle as the gold standard, 3DMAS. Therefore, the HANPCS is reliable and valid because of its angular measurement reliability and validity.

A Miniature Humanoid Robot That Can Play Soccor

  • Lim, Seon-Ho;Cho, Jeong-San;Sung, Young-Whee;Yi, Soo-Yeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.628-632
    • /
    • 2003
  • An intelligent miniature humanoid robot system is designed and implemented as a platform for researching walking algorithm. The robot system consists of a mechanical robot body, a control system, a sensor system, and a human interface system. The robot has 6 dofs per leg, 3 dofs per arm, and 2 dofs for a neck, so it has total of 20 dofs to have dexterous motion capability. For the control system, a supervisory controller runs on a remote host computer to plan high level robot actions based on the vision sensor data, a main controller implemented with a DSP chip generates walking trajectories for the robot to perform the commanded action, and an auxiliary controller implemented with an FPGA chip controls 20 actuators. The robot has three types of sensors. A two-axis acceleration sensor and eight force sensing resistors for acquiring information on walking status of the robot, and a color CCD camera for acquiring information on the surroundings. As an example of an intelligent robot action, some experiments on playing soccer are performed.

  • PDF

Sleep Efficiency Measurement Algorithm Using an IR-UWB Radar Sensor (IR-UWB 레이더 센서 기반 수면 효율 측정 알고리즘)

  • Choi, Jeong Woo;Lee, Yu Na;Cho, Seok Hyun;Lim, Young-Hyo;Cho, Sung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.214-217
    • /
    • 2017
  • In this paper, we propose a sleep efficiency measurement algorithm based on IR-UWB radar sensor in distance. Among the vital signs which can be measured by the IR-UWB radar sensor such as breathing rate, heartbeat rate, and movement, we analyzed correlation between the movement and the sleep efficiency, and based on the result, we propose a sleep efficiency measurement algorithm. In order to verify the performance of the proposed algorithm, we applied the algorithm to three polysomnography patients in hospitals and obtained the performance of an average absolute error within 3.9%.

Keyboard for Virtual Reality Head Mounted Display using Electro-oculogram (EOG를 사용한 가상현실 HMD용 키보드 구현)

  • Kim, Byeong-Jun;Kwon, Ki-Chul;Yang, Young-Man;Kim, Nam
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • A keyboard system for hands-free virtual reality head mounted display using electrooculogram (EOG) signal which occurs during the eye-blinking is proposed. This system consists of display device, gyroscope sensor, gravity sensor and electro-encephalogram (EEG) sensor, and it is implemented with Unity3D engine for system control and graphic processing. If the input language of proposed keyboard system is Korean, i.e. Hangul, the Chonjiin keyboard method is utilized; but for the English spelling, numbers or special characters, $3{\times}4$ keyboard method is used in order to solve the spatial problem. By the implemented method, it can be verified that the user can handle the keyboard input of virtual reality head mounted display with only neck movement and EOG, instead of using hands.

Analysis on Electromyogram(EMG) Signals by Body Parts for G-induced Loss of Consciousness(G-LOC) Prediction (G-induced Loss of Consciousness(G-LOC) 예측을 위한 신체 부위별 Electromyogram(EMG) 신호 분석)

  • Kim, Sungho;Kim, Dongsoo;Cho, Taehwan;Lee, Yongkyun;Choi, Booyong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.119-128
    • /
    • 2017
  • G-induced Loss of Consciousness(G-LOC) can be predicted by measuring Electromyogram(EMG) signals. Existing studies have mainly focused on specific body parts and lacked of consideration with quantitative EMG indices. The purpose of this study is to analyze the indices of EMG signals by human body parts for monitoring G-LOC condition. The data of seven EMG features such as Root Mean Square(RMS), Integrated Absolute Value(IAV), and Mean Absolute Value(MAV) for reflecting muscle contraction and Slope Sign Changes(SSC), Waveform Length (WL), Zero Crossing(ZC), and Median Frequency(MF) for representing muscle contraction and fatigue was retrieved from high G-training on a human centrifuge simulator. A total of 19 trainees out of 47 trainees of the Korean Air Force fell into G-LOC condition during the training in attaching EMG sensor to three body parts(neck, abdomen, calf). IAV, MAV, WL, and ZC under condition after G-LOC were decreased by 17 %, 17 %, 18 %, and 4 % comparing to those under condition before G-LOC respectively. Also, RMS, IAV, MAV, and WL in neck part under condition after G-LOC were higher than those under condition before G-LOC; while, those in abdomen and calf part lower. This study suggest that measurement of IAV and WL by attaching EMG sensor to calf part may be optimal for predicting G-LOC.

Tracking and Tracing the Status Changes of Sensor Tags based on the SIP Presence Model (SIP 프레즌스 모델 기반 센서 태그의 상태이력 추적)

  • Kim, Dong-Uk;Hong, Jin-Pyo
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.231-242
    • /
    • 2009
  • The EPC-Discovery Service (EPC-DS) is a good representative of the RFID Track & Trace. But this mechanism has several problems. EPC-DS uses centralized server scheme which may arise bottle-neck state and that cannot provide detail trace information of a RFID object. In addition, a trace node requires direct access method to a RFID object or an element which has information of the RFID object for Track & Trace. In this paper, we propose a novel RFID Track & Trace mechanism which based on the SIP presence model and SIP event notification. This mechanism can provide detail trace information and monitoring function, and also can rid the bottle-neck section by combination of SIP methods instead of centralized element.

Experimental analysis of whiplash injury with hybrid III 50 percentile test dummy

  • Gocmen, Ulas;Gokler, Mustafa Ilhan
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.61-77
    • /
    • 2018
  • In this study, the effects of sitting position of the driver on the whiplash neck injury have been analyzed experimentally by using hybrid III series 50 percentile male crash test dummy. A testing platform consisting of vehicle ground, driver foot rest, driver seat and a 3-point seatbelt has been prepared. This testing platform and the instrumented crash test dummy are prepared for tests according to the Euro NCAP whiplash testing protocol. The prepared test set-up has been exposed to 3 different acceleration-time loading curves defined in the Euro NCAP whiplash testing protocol by performing sled tests. 9 different sled tests have been performed with the combinations of 3 different seating positions of the crash test dummy and 3 different acceleration-time loading curves. The sensor data obtained from the crash test dummy and high-speed videos taken are analyzed according to the injury assessments criteria defined in the Euro NCAP whiplash testing protocol and the criticality of the whiplash injury is defined. It is seen that the backset distance of the driver head with the headrest and the height difference of the top of the head of the driver with the headrest have a great importance on whiplash injuries.

Preparation of Nanocolumnar In2O3 Thin Films for Highly Sensitive Acetone Gas Sensor

  • Han, Soo Deok;Song, Young Geun;Shim, Young-Seok;Lee, Hae Ryong;Yoon, Seok-Jin;Kang, Chong-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.383-387
    • /
    • 2016
  • Well-ordered nanocolumnar indium oxide ($In_2O_3$) thin films have been successfully fabricated by glancing angle deposition (GAD) using an e-beam evaporator. Nanocolumnar structures have a porous and large surface area with a narrow neck between nanocolumns, which allows them to detect minute amounts of gases. The nanocolumnar $In_2O_3$ thin films were fabricated by the GAD process at five different positions, viz. top, bottom, center, left, and right in a four inch substrate holder. There was a divergence in the thickness and the base resistance of each sensor. However, all the sensors exhibited extremely high sensitivity that was greater than $10^3$ times the change in electrical resistance after being exposed to 50 ppm of acetone gas at $300^{\circ}C$. Furthermore, the nanocolumnar $In_2O_3$ sensors displayed an extremely low detection limit (1.2 ppb) in dry atmosphere as well as in high humidity (80%). We demonstrated that the GAD nanocolumnar $In_2O_3$ sensors have an enormous potential for many applications owing to their particularly simple and reliable fabrication process.