DOI QR코드

DOI QR Code

Test-retest Reliability and Concurrent Validity of a Headphone and Necklace Posture Correction System Developed for Office Workers

  • Gyu-hyun Han (Department of Physical Therapy, The Graduate School, Yonsei University) ;
  • Chung-hwi Yi (Department of Physical Therapy, College of Software and Digital Healthcare Convergence, Yonsei University) ;
  • Seo-hyun Kim (Department of Physical Therapy, The Graduate School, Yonsei University) ;
  • Su-bin Kim (Department of Physical Therapy, The Graduate School, Yonsei University) ;
  • One-bin Lim (Department of Physical Therapy, Mokpo Science University)
  • Received : 2023.05.25
  • Accepted : 2023.07.26
  • Published : 2023.08.20

Abstract

Background: Office workers experience neck or back pain due to poor posture, such as flexed head and forward head posture, during long-term sedentary work. Posture correction is used to reduce pain caused by poor posture and ensures proper alignment of the body. Several assistive devices have been developed to assist in maintaining an ideal posture; however, there are limitations in practical use due to vast size, unproven long-term effects or inconsistency of maintaining posture alignment. We developed a headphone and necklace posture correction system (HANPCS) for posture correction using an inertial measurement unit (IMU) sensor that provides visual or auditory feedback. Objects: To demonstrate the test-retest reliability and concurrent validity of neck and upper trunk flexion measurements using a HANPCS, compared with a three-dimensional motion analysis system (3DMAS). Methods: Twenty-nine participants were included in this study. The HANPCS was applied to each participant. The angle for each action was measured simultaneously using the HANPCS and 3DMAS. The data were analyzed using the intraclass correlation coefficient (ICC) = [3,3] with 95% confidence intervals (CIs). Results: The angular measurements of the HANPCS for neck and upper trunk flexions showed high intra- (ICC = 0.954-0.971) and inter-day (ICC = 0.865-0.937) values, standard error of measurement (SEM) values (1.05°-2.04°), and minimal detectable change (MDC) values (2.92°-5.65°). Also, the angular measurements between the HANPCS and 3DMAS had excellent ICC values (> 0.90) for all sessions, which indicates high concurrent validity. Conclusion: Our study demonstrates that the HANPCS is as accurate in measuring angle as the gold standard, 3DMAS. Therefore, the HANPCS is reliable and valid because of its angular measurement reliability and validity.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (No. 2021R1F1A104792912).

References

  1. Brown WJ, Miller YD, Miller R. Sitting time and work patterns as indicators of overweight and obesity in Australian adults. Int J Obes Relat Metab Disord 2003;27(11):1340-6. https://doi.org/10.1038/sj.ijo.0802426
  2. Lee WH. Effect of distance between trunk and desk on forward head posture and muscle activity of neck and shoulder muscles during computer work. J Korean Soc Phys Med 2013;8(4):601-8. https://doi.org/10.13066/kspm.2013.8.4.601
  3. Burgess-Limerick R, Plooy A, Ankrum DR. The effect of imposed and self-selected computer monitor height on posture and gaze angle. Clin Biomech (Bristol, Avon) 1998;13(8):584-92. https://doi.org/10.1016/S0268-0033(98)00021-7
  4. Kang JH, Park RY, Lee SJ, Kim JY, Yoon SR, Jung KI. The effect of the forward head posture on postural balance in long time computer based worker. Ann Rehabil Med 2012;36(1):98-104. https://doi.org/10.5535/arm.2012.36.1.98
  5. Lee KS, Jung HY. Analysis of the change of the forward head posture according to computer using time. J Korean Soc Phys Med 2009;4(2):117-24.
  6. Cote P, van der Velde G, David Cassidy J, Carroll LJ, Hogg-Johnson S, Holm LW, et al. The burden and determinants of neck pain in workers. Eur Spine J 2008;17(Suppl 1):60-74. https://doi.org/10.1007/s00586-008-0626-9
  7. Florencio LL, Ferracni GN, Chaves TC, Palacios-Cena M, Ordas-Bandera C, Speciali JG, et al. Analysis of head posture and activation of the cervical neck extensors during a low-load task in women with chronic migraine and healthy participants. J Manipulative Physiol Ther 2018;41(9):762-70. https://doi.org/10.1016/j.jmpt.2018.07.002
  8. Mahmoud NF, Hassan KA, Abdelmajeed SF, Moustafa IM, Silva AG. The relationship between forward head posture and neck pain: a systematic review and meta-analysis. Curr Rev Musculoskelet Med 2019;12(4):562-77. https://doi.org/10.1007/s12178-019-09594-y
  9. Patwardhan AG, Khayatzadeh S, Havey RM, Voronov LI, Smith ZA, Kalmanson O, et al. Cervical sagittal balance: a biomechanical perspective can help clinical practice. Eur Spine J 2018;27(Suppl 1):25-38. https://doi.org/10.1007/s00586-017-5367-1
  10. Vasavada AN, Nevins DD, Monda SM, Hughes E, Lin DC. Gravitational demand on the neck musculature during tablet computer use. Ergonomics 2015;58(6):990-1004. https://doi.org/10.1080/00140139.2015.1005166
  11. Janwantanakul P, Pensri P, Jiamjarasrangsri V, Sinsongsook T. Prevalence of self-reported musculoskeletal symptoms among office workers. Occup Med 2008;58(6):436-8. https://doi.org/10.1093/occmed/kqn072
  12. Bhardwaj Y, Mahajan R. Prevalence of neck pain and disability in computer users. IJSR 2015;6(8):1288-90.
  13. Hafeez K, Ahmed Memon A, Jawaid M, Usman S, Usman S, Haroon S. Back pain - are health care undergraduates at risk? Iran J Public Health 2013;42(8):819-25.
  14. Poitras S, Blais R, Swaine B, Rossignol M. Management of work-related low back pain: a population-based survey of physical therapists. Phys Ther 2005;85(11):1168-81. https://doi.org/10.1093/ptj/85.11.1168
  15. Park SY, Yoo WG. Effect of EMG-based feedback on posture correction during computer operation. J Occup Health 2012;54(4):271-7. https://doi.org/10.1539/joh.12-0052-OA
  16. Kendall FP, McCreary EK, Provance PG. Muscles: testing and function with posture and pain. Lippincott Williams & Wilkins; 2005.
  17. Claus AP, Hides JA, Moseley GL, Hodges PW. Is 'ideal' sitting posture real? Measurement of spinal curves in four sitting postures. Man Ther 2009;14(4):404-8. https://doi.org/10.1016/j.math.2008.06.001
  18. Carcone SM, Keir PJ. Effects of backrest design on biomechanics and comfort during seated work. Appl Ergon 2007;38(6):755-64. https://doi.org/10.1016/j.apergo.2006.11.001
  19. Annetts S, Coales P, Colville R, Mistry D, Moles K, Thomas B, et al. A pilot investigation into the effects of different office chairs on spinal angles. Eur Spine J 2012;21(Suppl 2):S165-70. https://doi.org/10.1007/s00586-012-2189-z
  20. Baumgartner D, Zemp R, List R, Stoop M, Naxera J, Elsig JP, et al. The spinal curvature of three different sitting positions analysed in an open MRI scanner. ScientificWorldJournal 2012;2012:184016.
  21. Grondin DE, Triano JJ, Tran S, Soave D. The effect of a lumbar support pillow on lumbar posture and comfort during a prolonged seated task. Chiropr Man Therap 2013;21(1):21.
  22. Celenay ST, Kaya DO, Ozudogru A. Spinal postural training: comparison of the postural and mobility effects of electrotherapy, exercise, biofeedback trainer in addition to postural education in university students. J Back Musculoskelet Rehabil 2015;28(1):135-44. https://doi.org/10.3233/BMR-140501
  23. Yoo WG, Yi CH, Kim MH. Effects of a proximity-sensing feedback chair on head, shoulder, and trunk postures when working at a visual display terminal. J Occup Rehabil 2006;16(4):631-7. https://doi.org/10.1007/s10926-006-9059-7
  24. Raya R, Garcia-Carmona R, Sanchez C, Urendes E, Ramirez O, Martin A, et al. An inexpensive and easy to use cervical range of motion measurement solution using inertial sensors. Sensors (Basel) 2018;18(8):2582.
  25. Ailneni RC, Syamala KR, Kim IS, Hwang J. Influence of the wearable posture correction sensor on head and neck posture: sitting and standing workstations. Work 2019;62(1):27-35. https://doi.org/10.3233/WOR-182839
  26. Kuo YL, Huang KY, Kao CY, Tsai YJ. Sitting posture during prolonged computer typing with and without a wearable biofeedback sensor. Int J Environ Res Public Health 2021;18(10):5430.
  27. Kim A, Golnaraghi MF. Initial calibration of an inertial measurement unit using an optical position tracking system. Paper presented at: PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556); 2004 Apr 26-29; Monterey, CA, USA. Piscataway (NJ): IEEE, 2004. p. 96-101.
  28. Kim MS, Yu SB, Lee KS. Development of a high-precision calibration method for inertial measurement unit. Int J Precis Eng Manuf 2014;15(3):567-75. https://doi.org/10.1007/s12541-014-0372-3
  29. Bonett DG. Sample size requirements for estimating intra-class correlations with desired precision. Stat Med 2002;21(9):1331-5. https://doi.org/10.1002/sim.1108
  30. Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for reliability studies. Stat Med 1998;17(1):101-10. https://doi.org/10.1002/(SICI)1097-0258(19980115)17:1<101::AID-SIM727>3.0.CO;2-E
  31. Anoro-Hervera A, Lafuente-Perez A, Navarro-Fernandez G, Munoz-Garcia D, Lerma-Lara S, Beltran-Alacreu H. Intra-rater and inter-rater reliability of cervical active range of movement in young asymptomatic adults using inertial sensors. Expert Rev Med Devices 2019;16(12):1071-7. https://doi.org/10.1080/17434440.2019.1696675
  32. Song KJ, Choi BW, Choi BR, Seo GB. Cross-cultural adaptation and validation of the Korean version of the neck disability index. Spine (Phila Pa 1976) 2010;35(20):E1045-9. https://doi.org/10.1097/BRS.0b013e3181df78e9
  33. Yoon TL, Kim HN, Min JH. Validity and reliability of an inertial measurement unit-based 3-dimensional angular measurement of cervical range of motion. J Manipulative Physiol Ther 2019;42(1):75-81. https://doi.org/10.1016/j.jmpt.2018.06.001
  34. Nolze G. Euler angles and crystal symmetry. Cryst Res Technol 2015;50(2):188-201. https://doi.org/10.1002/crat.201400427
  35. Brink Y, Louw Q, Grimmer K, Schreve K, van der Westhuizen G, Jordaan E. Development of a cost effective three-dimensional posture analysis tool: validity and reliability. BMC Musculoskelet Disord 2013;14:335.
  36. Yi CH. Advanced data analysis for physical therapists and occupational therapists. Gyechuk Munhwasa; 2021.
  37. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 1998;26(4):217-38. https://doi.org/10.2165/00007256-199826040-00002
  38. Portney LG, Watkins MP. Foundations of clinical research: applications to practice. 3rd ed. Pearson/Prentice Hall; 2009.
  39. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 2010;47(8):931-6. https://doi.org/10.1016/j.ijnurstu.2009.10.001
  40. Jeon IC, Kwon OY, Weon JH, Ha SM, Kim SH. Reliability and validity of measurement using smartphone-based goniometer of tibial external rotation angle in standing knee flexion. Phys Ther Korea 2013;20(2):60-8. https://doi.org/10.12674/ptk.2013.20.2.060
  41. Webster KE, McClelland JA, Wittwer JE, Tecklenburg K, Feller JA. Three dimensional motion analysis of within and between day repeatability of tibial rotation during pivoting. Knee 2010;17(5):329-33. https://doi.org/10.1016/j.knee.2009.09.007
  42. Theobald PS, Jones MD, Williams JM. Do inertial sensors represent a viable method to reliably measure cervical spine range of motion? Man Ther 2012;17(1):92-6. https://doi.org/10.1016/j.math.2011.06.007
  43. Quek J, Brauer SG, Treleaven J, Pua YH, Mentiplay B, Clark RA. Validity and intra-rater reliability of an android phone application to measure cervical range-of-motion. J Neuroeng Rehabil 2014;11:65.
  44. Jones A, Sealey R, Crowe M, Gordon S. Concurrent validity and reliability of the Simple Goniometer iPhone app compared with the Universal Goniometer. Physiother Theory Pract 2014;30(7):512-6. https://doi.org/10.3109/09593985.2014.900835
  45. Kong KA. Statistical methods: reliability assessment and method comparison. Ewha Med J 2017;40(1):9-16. https://doi.org/10.12771/emj.2017.40.1.9
  46. Taylor JD, Bandy WD. Intrarater reliability of the KT1000 arthrometer in determining anterior translation of the glenohumeral joint. Arch Phys Med Rehabil 2005;86(4):826-9. https://doi.org/10.1016/j.apmr.2004.09.009