• 제목/요약/키워드: Nearshore current

검색결과 67건 처리시간 0.018초

Nearshore Current Pattern and Rip Current Occurrence at Jungmun Beach, Jeju by Numerical Computation

  • An, Seung-Hyun;Kim, Nam-Hyeong
    • 한국항해항만학회지
    • /
    • 제41권2호
    • /
    • pp.55-62
    • /
    • 2017
  • A nearshore current or a wave-induced current is an important phenomenon in a nearshore zone, which is composed of longshore, cross-shore, and rip currents. The nearshore current is closely related to the occurrence of coastal accidents by beachgoers. A considerable number of coastal accidents by beachgoers involving the rip current have been reported at Jungmun Beach. However, in studies and observations of the nearshore current of Jungmun Beach, understanding of the rip current pattern remains unclear. In this study, a scientific approach is taken to understand the nearshore current and the rip current patterns at Jungmun Beach by numerical computation for year of 2015. From results of numerical computation, the occurrence and spatial characteristics of the rip current, and the similarities between the rip current and incident wave conditions are analyzed. The primary results of this study reveal that the rip currents are frequently generated at Jungmun Beach, especially in the western parts of the beach, and that the rip currents often occur with a wave breaking height of around 0.5 ~ 0.7 m, a wave period of around 6 ~ 8 seconds, and a breaking angle of around 0 ~ 15 degrees.

Predictive model for wave-induced currents and 3D beach evolution based on FAVOR Method

  • Kuroiwa, Masamitsu;Abualtayef, Mazen;Takada, Tetsushi;Sief, Ahmed Khaled;Matsubara, Yuehi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권2호
    • /
    • pp.68-74
    • /
    • 2010
  • The development of a numerical model using the fractional area/volume obstacle representation (FAVOR) method for predicting a nearshore current field bounded by complicated geometric shapes, and a three-dimensional (3D) beach evolution was described in this article. The 3D model was first tested against three cases to simulate the nearshore current fields around coastal structures, a river mouth, and a large scale cusp bathymetry. Then, the morphodynamic model tests, which are adopting the nearshore current model, were applied for the computations of beach evolution around a detached breakwater and two groins. It was confirmed that the presented model associated with the FAVOR method was useful to predict the nearshore current field in the vicinity of the complicated geometric shapes. Finally, the model was applied to a tombolo formation in a field site of Kunnui fishery port, which is located in Hokkaido, Japan.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

파랑에 의한 연안류의 수치모델에 관한 연구 (A Study on the Numerical Models of Wave induced Currents)

  • 이정만;김재중;박정철
    • 한국해양공학회지
    • /
    • 제12권3호통권29호
    • /
    • pp.75-85
    • /
    • 1998
  • A finite difference model for predicting time-dependent, wave-induced nearshore current is studied. The model includes wave refraction, wave-current interaction, bottom friction and wind effect. This model iteratively solved the linear the linear set of conservation of both mass and momentum, which were time averaged (over one wave period) and depth integrated, for mean velocities and free surface displacement. Numerical simulations of nearshore current under oblique wave attack, and for wave and wind induced current on a longshore periodic beach are carried out. Longshore velocities tend to zero in some distances outside the breaker line. And the peak velocity is shifted shoreward at the breaker line. The results represent the general characteristics of the nearshore current induced by wave.

  • PDF

잠제가 설치 된 부산 송도해수욕장의 해빈류 예측에 관한 3차원 수치해석기법(LES-WASS-3D)의 적용 (Application of 3-D Numerical Method (LES-WASS-3D) to Estimation of Nearshore Current at Songdo Beach with Submerged Breakwaters)

  • 허동수;이우동;김명규;윤종성
    • 한국해양공학회지
    • /
    • 제27권4호
    • /
    • pp.14-21
    • /
    • 2013
  • This study examined the field application of a 3-D numerical model (LES-WASS-3D) to the estimation of the nearshore current at Songdo beach, Busan. The wave and tide conditions observed at Songdo beach during Typhoon Ewiniar (July 10, 2006) were used in a numerical simulation. The numerical wave heights were in good agreement with the field data. The spatial distributions of the wave heights, mean water levels, and mean flows obtained from the numerical simulation are discussed in relation to the bottom topographical change near Songdo beach before and after Typhoon Ewiniar. The results revealed that LES-WASS-3D is a powerful tool for estimating the nearshore current in the field.

오일러형 해빈류 모형의 파랑응력 비교 (Comparison of Wave Stresses in the Eulerian Nearshore Current Models)

  • 안경모;서경덕;천후섭
    • 한국해안·해양공학회논문집
    • /
    • 제29권6호
    • /
    • pp.350-362
    • /
    • 2017
  • 오일러형 해빈류 모형은 계산된 질량흐름에 파랑질량흐름이 포함되어 있지 않기 때문에 수치모의된 계산결과를 정점 관측결과와 직접 비교할 수 있다. 또한 포물선형 연직분포를 가진 연안류를 재현할 수 있음으로 인해 라그랑지형 해빈류 모형보다 장점이 있다. 그러나 오일러형 해빈류 모형에서 파랑에 의한 응력인 파랑응력이 해빈류 모형에 따라 형태가 달라, 서로 다른 계산 결과가 나타나게 된다. Newberger and Allen(2007)의 파랑응력은 연직방향으로 수심의 함수가 아닌 상수인 반면에 Chun(2012)의 파랑응력은 수심의 함수로 표현된다. 이러한 차이는 해빈류 계산 결과에 직접적인 영향을 미치고 있어 본 논문에서는 이들 파랑응력의 차이를 해석적으로 비교하였다. 각 파랑응력에 대한 해빈류 모형을 Hamilton et al.(2001)의 LSTF(Large-scale Sediment Transport Facility) 수리모형 실험에 적용하여 차이를 비교함으로써 파랑응력항의 차이에 따른 해빈류 계산 결과의 특성을 검토하였다.

LOCALLY ENRICHED QUADTREE GRID NUMERICAL MODEL FOR NEARSHORE CIRCULATION IN THE SURF ZONE

  • Park, Koo-Yong
    • Water Engineering Research
    • /
    • 제1권3호
    • /
    • pp.187-197
    • /
    • 2000
  • This paper describes an adaptive quadtree-based 2DH wave-current interaction model which is able to predict wave breaking, shoaling, refraction, diffraction, wave-current interaction, set-up and set-down, mixing processes (turbulent diffusion), bottom frictional effects, and movement of the land-water interface at the shoreline. The wave period-and depth-averaged governing equations are discretised explictly by means of an Adams-Bashforth second-order finite difference technaique on adaptive hierarchical staggered quadtree grids. Grid adaptation is achieved through seeding points distributed according to flow criteria(e.g. local current gradients). Results are presented for nearshore circulation at a sinusoidal beach. Enrichment permits refined modelling of important localised flow features.

  • PDF

미국 매사추세츠주 Cape Cod 해안의 퇴적물 이동 (A Sediment Transport of Cape Cod Coast, Massachusetts, USA)

  • 김동주;은고요나
    • 한국환경과학회지
    • /
    • 제6권6호
    • /
    • pp.589-594
    • /
    • 1997
  • A total of 24 surface sediment samples collected from coastal region and fronting of sea cliff on Cape Cod In southeastern Massachusetts, were analyzed to Investigate the sediment transport mechanism. According to the result of grainsize analysis, the overall trend of g.k size decreases from the north(Wood End Beach) to the south(Nauset Light Beachy. The coarser materials tend to be deposited at the foreshore than at the backshore. Especially gavel content(%) Is very high in northern beaches. The lavel fraction tended to concentrate at the toe of the beach. In addition to gravel. the beach and nearshore bar also tended to be deposite of very coarse sand and the Inner fraction accumulate in the offshore bar, Grainsize analyses of sediment Indicates that the coarsest sands Including gravel accumulate In the beach and nearshore bar, the finer fraction winnowed out by wave action to be deposited In the offshore bar. The beach and nearshore bar sands and gavel are subsequently transported laterally by the wave-driven longshore drift, and finally they come to rest in the distal end of Provincetown Hook. The faller offshore sands are trnasported laterally to the south by net southward-directed longshore current.

  • PDF

연안역 구조물 주위에서의 해빈류의 수치해석에 관한 연구 (A Study on the Numerical Model of Wave Induced Current around Nearshore Structure)

  • 민병형;이상화;김인철
    • 한국해양공학회지
    • /
    • 제5권1호
    • /
    • pp.55-63
    • /
    • 1991
  • This study is to predict accurately the wave induced current accuring by the radiation stress which acts as the driving force around Nearshore structure. For the wave induced current, the depth integrated and time averaged governing equation of an unsteady nonlinear form is derived from the continuity and momentum equation of an incompressible fluid. Numerical solutions are obtained by a finite difference method for the governing equation. In the vicinity of a structure, computed flow patterns show good agreement with the hydraulic experimental data. The numerical results obtained by neglecting the convective term show a large change of alongshore and offshore current.

  • PDF

소형 표류부이를 이용한 안목해안 표층 연안류 관측 (Surface current measurements using lagrangian Drifters in Anmok)

  • 임학수;김무종;심재설
    • 한국연안방재학회지
    • /
    • 제4권spc호
    • /
    • pp.245-253
    • /
    • 2017
  • In this study, surface currents measured by small lagrangian GPS drifters (Aquadrifter) in Anmok coastal waters were analysed to account for the variability of nearshore surface current and wave-induced current to understand sediment transport mechanism near the crescentic bars in the surf-zone and near Kangneung breakwater and submerged breakwater in Anmok. The 8 times lagrangian drifter experiments were conducted mostly during in 2nd, 3rd, 4th intensive measurements in winter, summer, and spring seasons with long-term wave observation at the station W1. The analysed surface currents near the breakwaters in Anmok show that wave-induced currents at the middle of the submerged breakwater were separated and flowed toward the shoreline but offshore currents were dominant through the channels between the breakwaters. The longshore currents near the shoreline were flowed to the northwest (southeast) depending on the incoming waves from ENE (NNE). The surface nearshore offshore currents were generated mostly by waves and winds in case of high and low wave energy environments. Using the small-size lagrangian surface drifter experiments, we successfully measured longshore and offshore wave-induced currents in the surf-zone and near submerged breakwater close to Kangneung breakwater. The drifter experiment results show the availability of direct observation of nearshore surface currents to understand the mechanism of sediment transport analysing observed wave-induced current and ebb-current in the surf-zone generated by incoming waves and local winds.