• Title/Summary/Keyword: Nearshore Tsunami

Search Result 7, Processing Time 0.022 seconds

Numerical Simulation of Nearshore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • Park, Jong-Chun;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.231-239
    • /
    • 2003
  • A Digital Wave Tank simulation technique based on a finite-difference method and a modified marker-and-cell (MAC) algorithm is applied to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach and Ohkushiri island, and to predict maximum wave run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain and the boundary values updated at each time step by a finite-difference time-marching scheme in the frame of rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the modified marker-density function technique. The Nearshore Tsunami is assumed to be a solitary wave and generated from the numerical wavemaker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods based on the shallow-water wave theory.

  • PDF

Effects of Tsunami and Disaster Response System (뉴스초점 - 지진해일의 영향과 방재대책)

  • Kang, Young-Seung
    • Journal of the Korean Professional Engineers Association
    • /
    • v.45 no.1
    • /
    • pp.45-48
    • /
    • 2012
  • The 2011 Japan Tsunami caused tremendous damage to coastal areas. Because of their drastic propagation speed and large run-up height, nearshore tsunami can cause catastrophic damages on coastal communities within a short time. It is necessary to establish the tsunami hazard mitigation to reduce human injury housing damage. The construction of Tsunami warning system and production of hazard map are needed for minimizing damage by tsunami.

  • PDF

Numerical Simulation of a Near shore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • 박종천;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.7-15
    • /
    • 2003
  • A Digital Wave Tank simulation technique, based on a finite-difference method and a modified marker-and-cell (MAC) algorithm, is applied in order to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach, Ohkushiri Island, and to predict maximum wove run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain, and the boundary values are updated at each time step, by a finite-difference time-marching scheme in the frame of the rectangular coordinate system. The fully nonlinear, kinematic, free-surface condition is satisfied by the modified marker-density function technique. The near shore Tsunami is assumed to be a solitary wave, and is generated from the numerical wave-maker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods, based on the shallow-water wave theory.

Relationship between Maximum Wave Heights of Tsunamis and Earthquake Parameters (지진 매개변수와 지진해일 최대파고의 상관관계)

  • Sim, Ju-Yeol;Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.135-142
    • /
    • 2009
  • The initial free surface profile and energy of a tsunami are closely related to the wave heights of a tsunami in nearshore and can be determined by using the earthquake parameters. Along the Western coast of Japan, the possibility of a tsunami triggering by undersea earthquakes is very high. Many seismologists have attempted to predict the parameters of earthquakes that could occur in these regions, but it is difficult to accurately predict them. As such, several case studies have been conducted involving behaviors of an unexpected tsunami that occurred in this region. If a relationship between the earthquake parameters and the wave heights of a tsunami is found, it would be easier to examine the effects of the tsunami. In this study, several virtual tsunami events have been simulated, and the wave heights of the tsunami are computed by varying the earthquake parameters to examine the relationship between the earthquake parameters and the tsunami wave heights. Numerical simulations have been conducted in virtual topography.

Run-up heights of nearshore tsunami based on quadtree grids (Quadtree격자를 이용한 근해지진해일의 처오름높이 계산)

  • Lin, Tae-Hoon;Park, Koo-Yong;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.705-713
    • /
    • 2003
  • To investigate the run-up heights of nearshore tsunamis in the vicinity of a circular island, a numerical model has been developed based on quadtree grids. The governing equations of the model are the nonlinear shallow-water equations. The governing equations are discretized explicitly by using a finite difference leap-frog scheme on adaptive hierarchical quadtree grids. The quadtree grids are generated around a circular island where refined with rectangular or circular domain. Obtained numerical results have been verified by comparing to available laboratory measurements. A good agreement has been achieved.

Sensitivity Analysis According to Fault Parameters for Probabilistic Tsunami Hazard Curves (단층 파라미터에 따른 확률론적 지진해일 재해곡선의 민감도 분석)

  • Jho, Myeong Hwan;Kim, Gun Hyeong;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.368-378
    • /
    • 2019
  • Logic trees for probabilistic tsunami hazard assessment include numerous variables to take various uncertainty on earthquake generation into consideration. Results from the hazard assessment vary in different way as more variables are considered in the logic tree. This study is conducted to estimate the effects of various scaling laws and fault parameters on tsunami hazard at the nearshore of Busan. Active fault parameters, such as strike angle, dip angle and asperity, are adjusted in the modelling of tsunami propagation, and the numerical results are used in the sensitivity analysis. The influence of strike angle to tsunami hazard is not as much significant as it is expected, instead, dip angle and asperity show a considerable impact to tsunami hazard assessment. It is shown that the dip angle and the asperity which determine the initial wave form are more important than the strike angle for the assessment of tsunami hazard in the East Sea.

Review of Video Imaging Technology in Coastal Wave Observations and Suggestion for Its Applications (비디오 영상 자료를 이용한 연안 국지파랑 관측기술과 그 활용에 대한 고찰)

  • Lee, Dong-Young;Yoo, Je-Seon;Park, Kwang-Soon
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.415-422
    • /
    • 2009
  • The wave observation system in Korea has been established with an emphasis on pointmeasurement based on in situ instrumentations. However, the system cannot fully investigate the coastal wave-related problems that are significantly localized and intensified with three-dimensional regional geometries. Observation technique that can cover local processes with large time and spatial variation needs to be established. Video imaging techniques that can provide continuous monitoring of coastal waves and related phenomena with high spatial and temporal resolutions at minimum cost of instrumentation risks are reviewed together with present status of implementation in Korea. Practical applications of the video imaging techniques are suggested to tackle with various coastal issues of public concern in Korea including, real-time monitoring of wave runup and overtopping of swells on the east coast of Korea, longshore and rip currents, morphological and bathymetric changes, storm surge and tsunami inundation, and abnormal extreme waves in the west coast of Korea, etc.