• Title/Summary/Keyword: Nearest Neighbor Selection

Search Result 61, Processing Time 0.025 seconds

An Adaptive Method For Face Recognition Based Filters and Selection of Features (필터 및 특징 선택 기반의 적응형 얼굴 인식 방법)

  • Cho, Byoung-Mo;Kim, Gi-Han;Rhee, Phill-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • There are a lot of influences, such as location of camera, luminosity, brightness, and direction of light, which affect the performance of 2-dimensional image recognition. This paper suggests an adaptive method for face-image recognition in noisy environments using evolvable filtering and feature extraction which uses one sample image from camera. This suggested method consists of two main parts. One is the environmental-adjustment module which determines optimum sets of filters, filter parameters, and dimensions of features by using "steady state genetic algorithm". The other another part is for face recognition module which performs recognition of face-image using the previous results. In the processing, we used Gabor wavelet for extracting features in the images and k-Nearest Neighbor method for the classification. For testing of the adaptive face recognition method, we tested the adaptive method in the brightness noise, in the impulse noise and in the composite noise and verified that the adaptive method protects face recognition-rate's rapidly decrease which can be occurred generally in the noisy environments.

A Point-to-Multipoint Routing Path Selection Algorithm for Dynamic Routing Based ATM Network (동적 라우팅기반의 점대다중점 라우팅 경로 선택)

  • 신현순;이상호;이경호;박권철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8A
    • /
    • pp.581-590
    • /
    • 2003
  • This paper proposes the routing path selection mechanism for source routing-based PtMP (Point-to-Multipoint) call in ATM switching system. Especially, it suggests PtMP routing path selection method that can share the maximum resource prior to the optimal path selection, guarantee the reduction of path calculation time and cycle prevention. The searching for the nearest branch point from destination node to make the maximum share of resource is the purpose of this algorithm. Therefore among neighbor nodes from destination node by back-tracking, this algorithm fixes the node crossing first the node on existing path having the same Call ID as branch node, constructs the optimal PtMP routing path. The optimal node to be selected by back-tracking is selected by the use of Dijkstra algorithm. That is to say, PtMP routing path selection performs the step of cross node selection among neighboring nodes by back-tracking and the step of optimal node selection(optimal path calculation) among neighboring nodes by back-tracking. This technique reduces the process of search of routing information table for path selection and path calculation, also solves the cycle prevention easily during path establishment.

Network Anomaly Detection using Hybrid Feature Selection

  • Kim Eun-Hye;Kim Se-Hun
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.649-653
    • /
    • 2006
  • In this paper, we propose a hybrid feature extraction method in which Principal Components Analysis is combined with optimized k-Means clustering technique. Our approach hierarchically reduces the redundancy of features with high explanation in principal components analysis for choosing a good subset of features critical to improve the performance of classifiers. Based on this result, we evaluate the performance of intrusion detection by using Support Vector Machine and a nonparametric approach based on k-Nearest Neighbor over data sets with reduced features. The Experiment results with KDD Cup 1999 dataset show several advantages in terms of computational complexity and our method achieves significant detection rate which shows possibility of detecting successfully attacks.

  • PDF

Empirical variogram for achieving the best valid variogram

  • Mahdi, Esam;Abuzaid, Ali H.;Atta, Abdu M.A.
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.547-568
    • /
    • 2020
  • Modeling the statistical autocorrelations in spatial data is often achieved through the estimation of the variograms, where the selection of the appropriate valid variogram model, especially for small samples, is crucial for achieving precise spatial prediction results from kriging interpolations. To estimate such a variogram, we traditionally start by computing the empirical variogram (traditional Matheron or robust Cressie-Hawkins or kernel-based nonparametric approaches). In this article, we conduct numerical studies comparing the performance of these empirical variograms. In most situations, the nonparametric empirical variable nearest-neighbor (VNN) showed better performance than its competitors (Matheron, Cressie-Hawkins, and Nadaraya-Watson). The analysis of the spatial groundwater dataset used in this article suggests that the wave variogram model, with hole effect structure, fitted to the empirical VNN variogram is the most appropriate choice. This selected variogram is used with the ordinary kriging model to produce the predicted pollution map of the nitrate concentrations in groundwater dataset.

Treatment of Missing Data by Decomposition and Voting with Ordinal Data

  • Chun, Young-M.;Son, Hong-K.;Chung, Sung-S.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.585-598
    • /
    • 2007
  • It is so difficult to get complete data when we conduct a questionaire in actuality. And we get inefficient results if we analyze statistical tests with ignoring missing values. Therefore, we use imputation methods which evaluate quality of data. This study proposes a imputation method by decomposition and voting with ordinal data. First, data are sorted by each variable. After that, imputation methods are used by each decomposition level. And the last step is selection of values with voting. The proposed method is evaluated by accuracy and RMSE. In conclusion, missing values are related to each variable, median imputation method using decomposition and voting is powerful.

  • PDF

Default Prediction of Automobile Credit Based on Support Vector Machine

  • Chen, Ying;Zhang, Ruirui
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.75-88
    • /
    • 2021
  • Automobile credit business has developed rapidly in recent years, and corresponding default phenomena occur frequently. Credit default will bring great losses to automobile financial institutions. Therefore, the successful prediction of automobile credit default is of great significance. Firstly, the missing values are deleted, then the random forest is used for feature selection, and then the sample data are randomly grouped. Finally, six prediction models of support vector machine (SVM), random forest and k-nearest neighbor (KNN), logistic, decision tree, and artificial neural network (ANN) are constructed. The results show that these six machine learning models can be used to predict the default of automobile credit. Among these six models, the accuracy of decision tree is 0.79, which is the highest, but the comprehensive performance of SVM is the best. And random grouping can improve the efficiency of model operation to a certain extent, especially SVM.

Classifying Cancer Using Partially Correlated Genes Selected by Forward Selection Method (전진선택법에 의해 선택된 부분 상관관계의 유전자들을 이용한 암 분류)

  • 유시호;조성배
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • Gene expression profile is numerical data of gene expression level from organism measured on the microarray. Generally, each specific tissue indicates different expression levels in related genes, so that we can classify cancer with gene expression profile. Because not all the genes are related to classification, it is needed to select related genes that is called feature selection. This paper proposes a new gene selection method using forward selection method in regression analysis. This method reduces redundant information in the selected genes to have more efficient classification. We used k-nearest neighbor as a classifier and tested with colon cancer dataset. The results are compared with Pearson's coefficient and Spearman's coefficient methods and the proposed method showed better performance. It showed 90.3% accuracy in classification. The method also successfully applied to lymphoma cancer dataset.

FAFS: A Fuzzy Association Feature Selection Method for Network Malicious Traffic Detection

  • Feng, Yongxin;Kang, Yingyun;Zhang, Hao;Zhang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.240-259
    • /
    • 2020
  • Analyzing network traffic is the basis of dealing with network security issues. Most of the network security systems depend on the feature selection of network traffic data and the detection ability of malicious traffic in network can be improved by the correct method of feature selection. An FAFS method, which is short for Fuzzy Association Feature Selection method, is proposed in this paper for network malicious traffic detection. Association rules, which can reflect the relationship among different characteristic attributes of network traffic data, are mined by association analysis. The membership value of association rules are obtained by the calculation of fuzzy reasoning. The data features with the highest correlation intensity in network data sets are calculated by comparing the membership values in association rules. The dimension of data features are reduced and the detection ability of malicious traffic detection algorithm in network is improved by FAFS method. To verify the effect of malicious traffic feature selection by FAFS method, FAFS method is used to select data features of different dataset in this paper. Then, K-Nearest Neighbor algorithm, C4.5 Decision Tree algorithm and Naïve Bayes algorithm are used to test on the dataset above. Moreover, FAFS method is also compared with classical feature selection methods. The analysis of experimental results show that the precision and recall rate of malicious traffic detection in the network can be significantly improved by FAFS method, which provides a valuable reference for the establishment of network security system.

A Strategy for Neighborhood Selection in Collaborative Filtering-based Recommender Systems (협력 필터링 기반의 추천 시스템을 위한 이웃 선정 전략)

  • Lee, Soojung
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1380-1385
    • /
    • 2015
  • Collaborative filtering is one of the most successfully used methods for recommender systems and has been utilized in various areas such as books and music. The key point of this method is selecting the most proper recommenders, for which various similarity measures have been studied. To improve recommendation performance, this study analyzes problems of existing recommender selection methods based on similarity and presents a method of dynamically determining recommenders based on the rate of co-rated items as well as similarity. Examination of performance with varying thresholds through experiments revealed that the proposed method yielded greatly improved results in both prediction and recommendation qualities, and that in particular, this method showed performance improvements with only a few recommenders satisfying the given thresholds.

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.