• Title/Summary/Keyword: Near-infrared absorbing

Search Result 22, Processing Time 0.025 seconds

APPLICATION OF TIME-OF-FLIGHT NEAR INFRARED SPECTROSCOPY TO WOOD

  • Tsuchikawa, Satoru;Tsutsumi, Shigeaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1182-1182
    • /
    • 2001
  • In this study, the newly constructed optical measurement system, which was mainly composed of a parametric tunable laser and a near infrared photoelectric multiplier, was introduced to clarify the optical characteristics of wood as discontinuous body with anisotropic cellular structure from the viewpoint of the time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects of the cellular structure of wood sample, the wavelength of the laser beam λ, and the detection position of transmitted light on the time resolved profiles were investigated in detail. The variation of the attenuance of peak maxima At, the time delay of peak maxima Δt and the variation of full width at half maximum Δw were strongly dependent on the feature of cellular structure of a sample and the wavelength of the laser beam. The substantial optical path length became about 30 to 35 times as long as sample thickness except the absorption band of water. Δt ${\times}$ Δw representing the light scattering condition increased exponentially with the sample thickness or the distance between the irradiation point and the end of sample. Around the λ=900-950 nm, there may be considerable light scattering in the lumen of tracheid, which is multiple specular reflection and easy to propagate along the length of wood fiber. Such tendency was remarkable for soft wood with the aggregate of thin layers of cell walls. When we apply TOF-NIRS to the cellular structural materials like wood, it is very important to give attention to the difference in the light scattering within cell wall and the multiple specular-like reflections between cell walls. We tried to express the characteristics of the time resolved profile on the basis of the optical parameters for light propagation determined by the previous studies, which were absorption coefficient K and scattering coefficient S from Kubelka-Munk theory and n from nth power cosine model of radiant intensity. The wavelength dependency of the product of K/S and n, which expressed the light-absorbing and -scattering condition and the degree of anisotropy, respectively, was similar to that of the time delay of peak maxima Δt. The variation of the time resolved profile is governed by the combination of these parameters. So, we can easily find the set of parameters for light propagation synthetically from Δt.

  • PDF

Time-encoded Near-infrared (NIR) Spectroscopic Comparison of Absorbance Measurement Using an Acousto-optic NIR Swept Laser Source (음향광학 파장선택 필터 기반 파장훑음 레이저를 이용한 시간-인코딩 된 근적외선 흡광도 측정 비교 연구)

  • Jang, Hansol;Kim, Gyeong Hun;Han, Ga-Hee;Cho, Jaedu;Kim, Chang-Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • Time-encoded near-infrared spectroscopy (NIRS) system is proposed, based on a near-infrared (NIR) swept laser source, for comparison to the conventional NIRS method using a detector-type spectrometer. The cavity of the NIR swept laser source consists of a semiconductor optical amplifier (SOA) with a gain region around 800 nm, and several fiber-optic components. To change the output wavelength in time using an applied electric radio-frequency signal, an acousto-optic tunable filter (AOTF) is introduced in the fiber ring cavity configuration. To demonstrate the feasibility of an NIR swept laser source for NIRS imaging, the spectroscopic comparison of two kinds of absorbance-measuring systems a detector-type spectrometer using a white light source, and a source-type spectrometer using an NIR swept laser is successfully performed with an NIR-absorbing dye.

ATMOSPHERIC CORRECTION TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI) ON COMS

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.467-470
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. To achieve these mission objectives, it is necessary to develop an atmospheric correction technique which is capable of delivering geophysical products, particularly for highly turbid coastal regions that are often dominated by strongly absorbing aerosols from the adjacent continental/desert areas. In this paper, we present a more realistic and cost-effective atmospheric correction method which takes into account the contribution of NIR radiances and include specialized models for strongly absorbing aerosols. This method was tested extensively on SeaWiFS ocean color imagery acquired over the Northwest Pacific waters. While the standard SeaWiFS atmospheric correction algorithm showed a pronounced overcorrection in the violet/blue or a complete failure in the presence of strongly absorbing aerosols (Asian dust or Yellow dust) over these regions, the new method was able to retrieve the water-leaving radiance and chlorophyll concentrations that were consistent with the in-situ observations. Such comparison demonstrated the efficiency of the new method in terms of removing the effects of highly absorbing aerosols and improving the accuracy of water-leaving radiance and chlorophyll retrievals with SeaWiFS imagery.

  • PDF

Self-Aggregation of Synthetic Magnesium Bacteriochlorins as a Photosynthetic Antenna Model

  • Kunieda, Michio;Mizoguchi, Tadashi;Tamiaki, Hitoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.353-355
    • /
    • 2002
  • We prepared 3-(1-hydroxyethyl)-bacteriopyrochlorophy11-a (3) possessing magnesium atom and phytyl ester from modification of natural bacteriochlorophyll(BChl)-a. A dichloromethane solution of (3$^1$R) and (3$^1$S)-3 was diluted with 100~1000 fold volume of cyclohexane to give new species absorbing near-infrared lights. The resulting Q, maximum of (3$^1$R)-3 was 860 nm and red-shifted by 2150 $cm^{-1}$ / from the monomeric. In the nonpolar organic solvent, epimeric (3$^1$S)-3 showed a 1ess red-shifted peak at 798 nm as well as a residual monomeric band. Such visible spectra indicated that 3 diastereose1ectively aggregated in cyclohexane to afford oligomers possessing a simi1ar supramolecular structure with chlorosomal aggregates of natural BChl-d, 7,8-dehydro-form of 3.

  • PDF

Syntheses and Characteristics of Intermolecular Charge-Transfer Complex Dyes (분자간 전하이동형 기능성 색소의 합성과 물성)

  • Kim, Sung Hoon;Lee, Soon Nam;Lim, Yong Jin
    • Textile Coloration and Finishing
    • /
    • v.4 no.1
    • /
    • pp.21-25
    • /
    • 1992
  • The charge-transfer(CT) complexes derived from various donors and acceptors were evaluated as coloring matter. Dyes absorbing light in the region from the visible to the near-infrared wavelengths were synthesized. In order to determine the molar ratio of the donor to the acceptor in the CT complex in the solution, the continuous variational method was applied to each system. A 1:1 correspondence between the donor and the acceptor molecules in the CT complex in the solution is established. Color development properties in paper were examined. The longer the exposure time at constant temperature, the deeper the strength of color in paper. The strength of color at high temperature was decreased, because sublimed CT dyes in paper were migrated out side of paper.

  • PDF

Synthesis and Characterization of Pentarylene Bisimide Derivative as NIR Colorant (NIR Colorant용 Pentarylene Bisimide의 합성 및 특성 연구)

  • Baek, Kwan;Jeong, Yeon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.140-146
    • /
    • 2012
  • A variety of dyes are commercially available today, there is an ongoing need for new chromophoric systems and low-band-gap materials. For example, near-infrared (NIR) emission has received increased attention for applications in bioassays and medicine while NIR absorption is demanded for laser-welding of plastics or efficient blocking of heat rays. Most of the commercially available NIR materials are not suitable for such purposes owing to their insufficient stability. We have developed a novel NIR-absorbing polyaromatic dye. By extending the system of perylenebis(dicarboximide)s along the molecular long axis, we have obtained the higher homologue pentarylenebis(dicarboximide). We have tried to introduce imide functional group to pentarylene in order to increase chemical and thermal stability.

Iodine doping effect of $\sigma$ -conjugate poly(methyl-phenylsilene). ($\sigma$-공액 고분자 poly(methyl-phenylsilyene)의 요오드 도핑효과 연구)

  • ;;S. Nespurek
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.145-148
    • /
    • 2000
  • In contrast to the $\pi$ -conjugated polymers which typically absorb light only in the visible spectral region, the $\sigma$-conjugated polymers can be used as efficient material absorbing light in the UV region. In this work, the electronic and optical properties of I$_2$-doped $\sigma$ -conjugated poly (methyl-phenylsilylene) (PMPSi) polymer were investigated. DC conductivity up to 1.2$\times$10$^{-4}$ S/cm was obtained by I$_2$-doping. In UV/Vis absorbance spectrum, a new peak was observed near 370 nm, which was explained by polaron model. The photoluminescence (PL) intensity decreased with increasing degree of I$_2$-doping, and the Infrared (IR) spectrum analysis revealed that the dopants are not directly coupled to the polymer, but effect motions of the methyl and phenyl groups.

  • PDF

Cancer-targeted photothermal therapy using aptamer-conjugated gold nanoparticles

  • Hong, Eun Ji;Kim, Yoon-Seok;Choi, Dae Gun;Shim, Min Suk
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.429-436
    • /
    • 2018
  • Targeted intracellular delivery of therapeutic agents is one of the great challenges for cancer treatment. Aptamers that bind to a variety of biological targets have emerged as new targeting moieties with high specificity for targeted cancer therapy. In this study, near-infrared (NIR) light-absorbing hollow gold nanocages (AuNCs) were synthesized and conjugated with AS1411 aptamer to achieve cancer-targeted photothermal therapy. AuNC functionalized with PEG and AS1411 (AS1411-PEG-AuNC) exhibited selective cellular uptake in breast cancer cells due to selective binding of AS1411 to nucleolin, a protein that is over-expressed in cancer cells over normal cells. As a result, AS1411-PEG-AuNC showed cancer-targeted photothermal activity. This study demonstrates that aptamer-conjugated AuNCs are effective tumor-targeting photothermal agents.

Spectral Analysis for Non-Invasive Total Hemoglobin Measurement in the Region from 400 to 2500nm (총헤모글로빈 농도를 비침습적으로 측정하기 위한 400-2500nm 대역의 흡수 스펙트럼 분석)

  • Jeon, Kye-Jin;Kim, Yoen-Joo;Kim, Su-Jin;Kim, Hong-Sig;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.273-278
    • /
    • 2001
  • Absorption spectra of blood components have been measured for the purpose of predicting the total hemoglobin concentration. We obtained absorption spectra of major blood components from the visible to near-infrared of $400{\sim}2500nm$ region. In the near-infrared, water is the main absorbing constituent. The amount of water in the sample cell varies depending on the volume of solute concentration(water displacement). We acquired water-compensated spectra by considering the variation of water volume depending on the variation of analyze concentration. Those spectra show inherent absorption peaks of analyzes and linearity with respect to concentration. We selected wavelengths for non-invasive measurement of hemoglobin concentration considering the scattering effect of tissue and the interference of other blood components.

  • PDF

Infrared Absorption and Reflection Properties of Silver Nanoparticles Synthesized by Liquid Reduction Method (액상환원법을 이용하여 합성된 은 나노입자의 적외선 흡수 및 반사 특성)

  • Hong, Min Ji;Park, Min Ji;Kim, Jong Hwa;Rokade, Ashish A.;Jin, Young Eup;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.587-592
    • /
    • 2017
  • Uniform and optimum sized silver nanoplates were synthesized through the liquid phase reduction method by using silver nitrate solution as a starting chemical, dimethylformmide (DMF) as a reducing solvent, and polyvinylpyrrolidone (PVP) as reducing and surfactant agents. Synthesized and also film samples were characterized by using SEM, TEM, UV-Vis-NIR spectroscopy, particle size analyzer (PSA), and XRD. Triangle nanoplates with the size of 100~200 nm were found from the sample synthesized at $70^{\circ}C$ for 72 h using silver nitrate, DMF and 26 wt% PVP. The sample could reflect near-infrared light because it showed the maximum absorbing peak at about 1,000 nm. When the content or particle size of silver nanoplates increased in coating solutions, the transmittance decreased and the reflectance increased in film samples.