• Title/Summary/Keyword: Near-field source localization

Search Result 21, Processing Time 0.036 seconds

Simple closed-form solution for a single source estimation in mixed far-field and near-field conditions (원근 혼합환경에서 간단한 닫힌 형식을 이용한 단일 음원 위치 추정 기법)

  • Jung, Tae-Jin;Lee, KyunKyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • Based on correlation and least square method, a closed-form algorithm for estimating the location of mixed far-field and near-field source is presented using the Uniform Circular Array (UCA). Recently, for a homogeneous circular arrangement case, a correlation based closed-form algorithm is proposed to estimate 2-D angle (azimuth, elevation) and the extended algorithm is proposed to 3-D location (azimuth, elevation, range). These algorithms assume the far-field source or near-field source only. Therefore, for mixed source localization, the proposed algorithm estimates source location with the assumption of far-field source, and then estimates the range to distinguish the far-field from the near-field source. For both cases, numerical experiments have been performed, which confirmed the validity of the proposed algorithm.

Efficiency Evaluation of the Unconditional Maximum Likelihood Estimator for Near-Field DOA Estimation

  • Arceo-Olague, J.G.;Covarrubias-Rosales, D.H.;Luna-Rivera, J.M.
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.761-769
    • /
    • 2006
  • In this paper, we address the problem of closely spaced source localization using sensor array processing. In particular, the performance efficiency (measured in terms of the root mean square error) of the unconditional maximum likelihood (UML) algorithm for estimating the direction of arrival (DOA) of near-field sources is evaluated. Four parameters are considered in this evaluation: angular separation among sources, signal-to-noise ratio (SNR), number of snapshots, and number of sources (multiple sources). Simulations are conducted to illustrate the UML performance to compute the DOA of sources in the near-field. Finally, results are also presented that compare the performance of the UML DOA estimator with the existing multiple signal classification approach. The results show the capability of the UML estimator for estimating the DOA when the angular separation is taken into account as a critical parameter. These results are consistent in both low SNR and multiple-source scenarios.

  • PDF

Efficient 3-D Near-field Source Localization Algorithm Using Uniform Circular Array (환형배열센서를 이용한 근거리 표적의 효율적인 3차원 위치추정 알고리즘)

  • 이정훈;박규태;박도현;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.214-220
    • /
    • 2004
  • A computationally efficient algorithm is presented for 3-D near-field source localization using a uniform circular away (UCA). Algebraic relations are demonstrated between the incident angles (elevation angle and azimuth angle) under the far-field assumption and the actual near-field location (range. elevation angle, and azimuth angle). Using these relations as paths to follow to the peak of the 3-D MUSIC spectrum, the proposed algorithm replaces the 3-D search required in the conventional 3-D MUSIC with a 1-D path following after a 2-D initialization. thereby reducing the computational burden.

Joint Estimation of Near-Field Source Parameters and Array Response

  • Cui, Han;Peng, Wenjuan
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.83-94
    • /
    • 2017
  • Near-field source localization algorithms are very sensitive to sensor gain/phase response errors, and so it is important to calibrate the errors. We took into consideration the uniform linear array and are proposing a blind calibration algorithm that can estimate the directions-of-arrival and range parameters of incident signals and sensor gain/phase responses jointly, without the need for any reference source. They are estimated separately by using an iterative approach, but without the need for good initial guesses. The ambiguities in the estimations of 2-D electric angles and sensor gain/phase responses are also analyzed in this paper. We show that the ambiguities can be remedied by assuming that two sensor phase responses of the array have been previously calibrated. The behavior of the proposed method is illustrated through simulation experiments. The simulation results show that the convergent rate is fast and that the convergent precision is high.

Near field acoustic source localization using beam space focused minimum variance beamforming (빔 공간 초점 최소 분산 빔 형성을 이용한 근접장 음원 위치 추정)

  • Kwon, Taek-Ik;Kim, Ki-Man;Kim, Seongil;Ahn, Jae-kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.100-107
    • /
    • 2017
  • The focused MVDR (Minimum Variance Distortionless Response) can be applied for source localization in near field. However, if the number of sensors are increased, it requires a large amount of calculation to obtain the inverse of the covariance matrix. In this paper we propose a focused MVDR method using that beam space is formed from output of far field beamformer at the subarray. The performances of the proposed method was evaluated by simulation. As a result of simulation, the proposed method has the higher spatial resolution performance then the conventional delay-and-sum beamformer.

Experiments for the Acoustic Source Localization in 2D Cavity Flow (2차원 공동 유동에서의 소음원 위치 판별을 위한 실험적 연구)

  • Lee, Jaehyung;Park, Kyu-Chol;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1241-1248
    • /
    • 2004
  • This paper presents an acoustic source localization technique on 2D cavity model in flow using a phased microphone array. Investigation was performed on cavity flows of open and closed types. The source distributions on 2D cavity flow were investigated in an anechoic open-jet wind tunnel. The array of microphones was placed outside the flow to measure the far field acoustic signals. The optimum sensor placement was decided by varying the relative location of the microphones to improve the spatial resolution. Pressure transducers were flush-mounted on the cavity surface to measure the near-filed pressures. It is shown that the propagated far field acoustic pressures are closely correlated to the near-field pressures and their spectral contents are affected by the cavity parameter L/D.

Acoustic Source Localization in 2D Cavity Flow using a Phased Microphone Array (마이크로폰 어레이를 이용한 2차원 공동 유동에 대한 소음원 규명)

  • 이재형;최종수;박규철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.701-708
    • /
    • 2003
  • This paper presents an acoustic source localization technique on 2D cavity model in flow using a phased microphone way. Investigation was performed on cavity flows of open and closed types. The source distributions on 2D cavity flow were investigated in anechoic open-jet wind tunnel. The array of microphones was placed outside the flow to measure the far field acoustic signals. The optimum sensor placement was decided by varying the relative location of the microphones to improve the spatial resolution. Pressure transducers were flush-mounted on the cavity surface to measure the near-filed pressures. It is shown that the propagated far field acoustic pressures are closely correlated to the near-field pressures. It is also shown that their spectral contents are affected by the cavity parameter L/D.

  • PDF

Error Analysis of the Passive Localization Using Near-field Effect in the Sea (해양에서 근거리효과를 이용한 수동 위치추정 오차분석)

  • 박정수;최진혁
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.75-81
    • /
    • 2001
  • In this paper we analyzed the localization error of near-field detection algorithm in the sea. The near-field detection algorithms using triangulation and wavefront curvature basically assume a signal in two dimension of bearing and range. But the assumption causes localization error because there is three dimension of bearing, range, and depth in the sea. Even through three dimensional effect is considered, the localization error is occurred if multipath propagation in the sea is ignored. To analyze the localization error in the sea, we simulate the near-field localization using acoustic propagation model and focused beamforming considering wavefront curvature. The simulation results indicate that localization error always occurs in the sea and the error varied with sound velocity profile, water depth, bottom slope, source range, etc.

  • PDF

Near-field Source Localization Method using Matrix Pencil (Matrix Pencil 기법을 이용한 근거리 음원 위치 추정 기법)

  • Jung, Tae-Jin;Lee, Su-Hyoung;Yoon, Kyung Sik;Lee, KyunKyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.247-251
    • /
    • 2013
  • In this paper, near-field source localization algorithm is presented using Matrix Pencil in Uniform Linear Array(ULA). Based on the centrosymmetry of the ULA, the proposed algorithm decouples the steering vectors which allow for the bearing estimation using Matrix pencil. With estimated bearing, the range estimation of each source is consequently obtained by defining 1D MUSIC spectrum. Simulation results are presented to validate the performance of the proposed algorithm.

Source Localization Based on Independent Doublet Array (독립적인 센서쌍 배열에 기반한 음원 위치추정 기법)

  • Choi, Young Doo;Lee, Ho Jin;Yoon, Kyung Sik;Lee, Kyun Kyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.164-170
    • /
    • 2014
  • A single near-field sounde source bearing and ranging method based on a independent doublet array is proposed. In the common case of bearing estimation method, unform linear array or uniform circular array are used. It is constrained retaining aperture because of array structure to estimate the distance of the sound source. Recent using independent doublet array sound source's bearing and distance esmtimation method is proposed by wide aperture. It is limited to the case doublets are located on a straight line. In this paper, we generalize the case and estimate the localization of a sound source in the various array structure. The proposed algorithm was verified performance through simulation.