• 제목/요약/키워드: Near-body Interaction

검색결과 37건 처리시간 0.024초

The Design and Implementation of Virtual Studio

  • Sul, Chang-Whan;Wohn, Kwang-Yoen
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1996년도 Proceedings International Workshop on New Video Media Technology
    • /
    • pp.83-87
    • /
    • 1996
  • A virtual reality system using video image is designed and implemented. A participant having 2{{{{ { 1} over { 2} }}}}DOF can interact with the computer-generated virtual object using her/his full body posture and gesture in the 3D virtual environment. The system extracts the necessary participant-related information by video-based sensing, and simulates the realistic interaction such as collision detection in the virtual environment. The resulting scene obtained by compositing video image of the participant and virtual environment is updated in near real time.

  • PDF

2차원 모델을 이용한 한국형 인공심장 내 혈액 유동에 대한 수치적 해석 (Numerical Analysis of the Blood Flow in the Korean Artificial Heart Using Two Dimensional Model)

  • 박명수;심은보;고형종;사종엽;박찬영;민병구
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권4호
    • /
    • pp.301-307
    • /
    • 2003
  • 본 연구에서는 한국형 인공심장의 혈액주머니 내 혈액 유동에 대한 수치적 해석 결과를 제시하였다. 혈액 유동은 2차원 비정상 유동으로 가정하였으며. 이를 해석하기 위하여 유한요소 기반의 상용코드인 ADINA를 사용하였다. 액츄에이터와 혈액주머니사이의 강체-고체 접촉, 그리고 혈액주머니와 혈류 사이의 고체-유체 상호작용을 모두 계산에서 반영하였다. 본 연구에서는 혈액주머니의 형상설계 과정에서 제시되었던 3가지 모델에 대해서 계산을 수행하고 이들의 혈류역학적인 적합성을 분석하였다. 계산결과에 의하면 혈액주머니의 수축 시는 출구로의 강한 흐름과 입구 부분에서의 정체영역이 관찰되었다. 이완 시에는 외부로부터 입구로 강한 혈류가 유입되고 있으며, 닫힌 출구에서 부근에서는 재순환 영역이 발생한다. 수축 시 전단응력은 출구 모서리 부근에서 극한값들을 가지게 되며, 이완 시에는 주로 입구 모서리와 액츄에이터 접촉면에서 최소, 최고치를 보여주고 있다.

주상체(柱狀體)의 운동(運動) 및 표류력(漂流力)에 미치는 해류(海流)의 영향(影響) (Current Effect on the Motion and Drift Force of Cylinders Floating in Waves)

  • 이세창
    • 대한조선학회지
    • /
    • 제23권4호
    • /
    • pp.25-34
    • /
    • 1986
  • A two-dimensional linear method has been developed for the motion and the second-order steady force arising from the hydrodynamic coupling between waves and currents in the presence of a body of arbitrary shape. Interaction between the incident wave and current in the absence of the body lies in the realm beyond our interest. A Fredholm integral equation of the second kind is employed in association with the Haskind's potential for a steadily moving source of pulsating strength located in or below the free surface. The numerical calculations at the preliminary stage showed a significant fluctuation of the hydrodynamic forces on the surface-piercing body. The problem is approximately solved by using the asymptotic Green function for $U^2{\rightarrow}0$. The original Green function, however, is applied for the fully submerged body. Numerical calculations are made for a submerged and for a half-immersed circular cylinder and extensively for the mid-ship section of a Lewis-form. Some of the results are compared with other analytical results without any available experimental data. The current has strong influence on roll motion near resonance. When the current opposes the waves, the roll response are generally negligible in the low frequency region. The current has strong influence on roll motion near resonance. When the current opposes the wave, the roll response decreases. When the current and wave come from the same direction, the roll response increases significantly, as the current speed increases. The mean drift forces and moment on the submerged body are more affected by current than those on the semi-immersed circular cylinder or on the ship-like section in the encounter frequency domain.

  • PDF

Hydrodynamic Interaction Analysis of Floating Multi-body System

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook;Kim, Young-Hun
    • International Journal of Ocean System Engineering
    • /
    • 제1권4호
    • /
    • pp.198-204
    • /
    • 2011
  • Recently, several problems have occurred in the space, infra-structure, and facility of the contiguity of existing harbors due to the trend of enlarged container vessels. In this regard, the Mobile Harbor has been proposed conceptually in this study as an effective solution for these problems. The concept is that of a transfer loader that transfers containers from a large container ship to the harbor on land, and is a catamaran type floating barge. The catamaran-type vessel is well known for its advantage in maneuverability, resistance, and effectiveness for working on board. For the safe and effective operation of the two floating bodies (a container ship and the mobile harbor in the near sea detached from the quay), robot arms, novel crane systems, and pneumatic fenders are specially devised with an additional mooring facility or DP (dynamic positioning) system. In this study, this concept is to be verified through comparison and simulation studies under various environmental conditions. It is shown that the proposed concept is in general feasible but there are several areas for further investigation and improvement.

Three dimensional seismic deformation-shear strain-swelling performance of America-California Oroville Earth-Fill Dam

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • 제24권5호
    • /
    • pp.443-456
    • /
    • 2021
  • Structural design of the vertical displacements and shear strains in the earth fill (EF) dams has great importance in the structural engineering problems. Moreover, far fault earthquakes have significant seismic effects on seismic damage performance of EF dams like the near fault earthquakes. For this reason, three dimensional (3D) earthquake damage performance of Oroville dam is assessed considering different far-fault ground motions in this study. Oroville Dam was built in United States of America-California and its height is 234.7 m (770 ft.). 3D model of Oroville dam is modelled using FLAC3D software based on finite difference approach. In order to represent interaction condition between discrete surfaces, special interface elements are used between dam body and foundation. Non-reflecting seismic boundary conditions (free field and quiet) are defined to the main surfaces of the dam for the nonlinear seismic analyses. 6 different far-fault ground motions are taken into account for the full reservoir condition of Oroville dam. According to nonlinear seismic analysis results, the effects of far-fault ground motions on the nonlinear seismic settlement and shear strain behaviour of Oroville EF dam are determined and evaluated in detail. It is clearly seen that far-fault earthquakes have very significant seismic effects on the settlement-shear strain behaviour of EF dams and these earthquakes create vital important seismic damages on the swelling behaviour of dam body surface. Moreover, it is proposed that far-fault ground motions should not be ignored while modelling EF dams.

측추력 제어 유도탄의 공력모델링시 CFD의 적용 (Use of CFD for Aerodynamic Interference Modelling of Jet-Controlled Missile)

  • 성웅제;홍승규;안창수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.120-125
    • /
    • 2003
  • Recently, lateral jet has been adopted as an effective control device for high maneuverable tactical missiles in supersonic regime. Aerodynamic interference caused by the lateral jet can be categorized into two phenomena : local interaction redistributing surface pressure near the jet exit region and downstream interaction affecting tail control effectiveness. As part of on-going research, this paper deals with the aerodynamic modeling to predict the variation of force and moment when lateral jet of is activated on the missile body. For this purpose, a series of numerical simulation has been performed and the results are presented. Using the information obtained by CFD, aerodynamic model of preliminary level has been constructed and is reviewed. Some relevant comparison with wind tunnel tests are presented.

  • PDF

Numerical Simulation of Wave Breaking Near Ship Bow

  • Lee, Young-Gill;Kim, Nam-Chul;Yu, Jin-Won;Choi, Si-Young
    • Journal of Ship and Ocean Technology
    • /
    • 제12권1호
    • /
    • pp.16-27
    • /
    • 2008
  • The interaction between advancing ships and the waves generated by them plays important roles in wave resistances and ship motions. Wave breaking phenomena near the ship bow at different speeds are investigated both numerically and experimentally. Numerical simulations of free surface profiles near the fore bodies of ships are performed and visualized to grasp the general trend or the mechanism of wave breaking phenomena from moderate waves rather than concentrating on local chaotic irregularities as ship speeds increase. Navier-Stokes equations are differentiated based on the finite difference method. The Marker and Cell (MAC) Method and Marker-Density Method are employed, and they are compared for the description of free surface conditions associated with the governing equations. Extra effort has been directed toward the realization of extremely complex free surface conditions at wave breaking. For this purpose, the air-water interface is treated with marker density, which is used for two layer flows of fluids with different properties. Adaptation schemes and refinement of the numerical grid system are also used at local complex flows to improve the accuracy of the solutions. In addition to numerical simulations, various model tests are performed in a ship model towing tank. The results are compared with numerical calculations for verification and for realizing better, more efficient research performance. It is expected that the present research results regarding wave breaking and the geometry of the fore body of ship will facilitate better hull form design productivity at the preliminary ship design stage, especially in the case of small and fast ship design. Also, the obtained knowledge on the impact due to the interaction of breaking waves and an advancing hull surface is expected to be applicable to investigation of the ship bow slamming problem as a specific application.

Comparative study on the resistance performance of an icebreaking cargo vessel according to the variation of waterline angles in pack ice conditions

  • Kim, Moon-Chan;Lee, Won-Joon;Shin, Yong-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.876-893
    • /
    • 2014
  • The resistance performance of an icebreaking cargo vessel according to the variation of waterline angles is investigated numerically and experimentally. A recently developed Finite Element (FE) model is used in our analysis. A resistance test with synthetic ice is performed in the towing tank at Pusan National University (PNU) to compare and validate the computed results. We demonstrate good agreement between the experimental and numerical results. Shipice interaction loads are numerically calculated based on the Fluid Structure Interaction (FSI) method in the commercial FE package LS-DYNA. Test results from model testing with synthetic ice at the PNU towing tank are used to compare and validate the numerical simulations. For each waterline angle, numerical and experimental comparisons were made for three concentrations (90%, 80%, and 60%) of pack ice. Ice was modeled as a rigid body, but the ice density was the same as that used in the experiments. A comparative study according to the variation of stem angles is expected to be conducted in the near future.

병렬 계류된 모바일하버의 운동응답 및 계류 해석 (Motion Response and Mooring Analysis of Mobile Harbors Moored in Side-by-side)

  • 김영복
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.53-60
    • /
    • 2009
  • Recently, since there are several problems in space, the infra-structure and the facilities in the contiguity of the existing harbors due to the trend of enlarging the container capacity of the large container vessel, a special floating platform named as the Mobile Harbor has been proposed conceptually as an effective solution of those problems. Two kinds of hull shapes, a conventional mono-hull type and a catamaran type, are proposed as midway feeders to transfer containers to the harbor on land from a large container ship on near shore. In this study, the motion response and mooring analysis are carried out for comparing the global performance of two types of Mobile Harbor. Robot arm mooring facility specially is devised and newly tried to use for the safe fixation of a large container ship and the Mobile Harbor on near shore. It would be expected for this comparison study to give a guideline to design the efficient hull form for a midway loader.

수치 시뮬레이션을 통한 평판내 파이프라인 주위의 점성유동 연구 (A Study on Viscous Flow around a Pipeline between Parallel Walls by the Numerical Simulation)

  • 곽승현
    • 한국항해항만학회지
    • /
    • 제27권5호
    • /
    • pp.473-478
    • /
    • 2003
  • 평행한 벽 사이에 원형배관(circular pipeline)을 놓고 그 주위의 유동특성에 대한 수치연구를 수행하였다. 비압축성 유체를 가지고, Navier-Stokes 방정식을 풀었고 3차 풍상(upwind) 차분의 수치해법을 이용하였다. 한쪽 벽과의 거리가 매우 작아질 때, 볼텍스 떨어짐이 상당히 억압되는데 이것은 벽 경계와의 상호 박리 작용 때문으로 간수된다. 본 연구는 레이놀드 수의 변함과 물체가 벽에 접근함에 따른 볼텍스 떨어짐의 특성을 규명하는데 있다. 원형배관 후류와 평행벽내 유기된 박리의 상호작용을 집중적으로 다루며 서로 다른 조건에서 박리와 와역한(vorticity dynamics)의 특성을 해석하였다.