• Title/Summary/Keyword: Near-Infrared

Search Result 1,693, Processing Time 0.028 seconds

RF and Optical properties of Graphene Oxide

  • Im, Ju-Hwan;Rani, J.R.;Yun, Hyeong-Seo;O, Ju-Yeong;Jeong, Yeong-Mo;Park, Hyeong-Gu;Jeon, Seong-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.68.1-68.1
    • /
    • 2012
  • The best part of graphene is - charge-carriers in it are mass less particles which move in near relativistic speeds. Comparing to other materials, electrons in graphene travel much faster - at speeds of $10^8cm/s$. A graphene sheet is pure enough to ensure that electrons can travel a fair distance before colliding. Electronic devices few nanometers long that would be able to transmit charge at breath taking speeds for a fraction of power compared to present day CMOS transistors. Many researches try to check a possibility to make it a perfect replacement for silicon based devices. Graphene has shown high potential to be used as interconnects in the field of high frequency electrical devices. With all those advantages of graphene, we demonstrate characteristics of electrical and optical properties of graphene such as the effect of graphene geometry on the microwave properties using the measurements of S-parameter in range of 500 MHz - 40 GHz at room temperature condition. We confirm that impedance and resistance decrease with increasing the number of graphene layer and w/L ratio. This result shows proper geometry of graphene to be used as high frequency interconnects. This study also presents the optical properties of graphene oxide (GO), which were deposited in different substrate, or influenced by oxygen plasma, were confirmed using different characterization techniques. 4-6 layers of the polycrystalline GO layers, which were confirmed by High resolution transmission electron microscopy (HRTEM) and electron diffraction analysis, were shown short range order of crystallization by the substrate as well as interlayer effect with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups on its layers. X-ray photoelectron Spectroscopy (XPS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation, and Fourier Transform Infrared spectroscopy (FTIR) and XPS analysis shows the changes in oxygen functional groups with nature of substrate. Moreover, the photoluminescent (PL) peak emission wavelength varies with substrate and the broad energy level distribution produces excitation dependent PL emission in a broad wavelength ranging from 400 to 650 nm. The structural and optical properties of oxygen plasma treated GO films for possible optoelectronic applications were also investigated using various characterization techniques. HRTEM and electron diffraction analysis confirmed that the oxygen plasma treatment results short range order crystallization in GO films with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups. In addition, Electron energy loss spectroscopy (EELS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation and XPS analysis shows that epoxy pairs convert to more stable C=O and O-C=O groups with oxygen plasma treatment. The broad energy level distribution resulting from the broad size distribution of the $sp^2$ clusters produces excitation dependent PL emission in a broad wavelength range from 400 to 650 nm. Our results suggest that substrate influenced, or oxygen treatment GO has higher potential for future optoelectronic devices by its various optical properties and visible PL emission.

  • PDF

Surface Deformation and Behavior of Magma Activity Using EDM (EDM을 활용한 지표변화율과 마그마 활동 양상 변화 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.71-81
    • /
    • 2013
  • Measuring the distance between benchmarks placed on a volcano tens to thousands of meters apart can sometimes pinpoint where and when magma is rising toward the surface. Rising magma will sometimes push overlying rocks upward or shove them aside. In either case, one part of the volcano may actually move horizontally relative to another part from as little as a few millimeters to as much as several tens of meters. The challenge in measuring such changes with an electronic distance meter is putting benchmarks in the right places and making frequent measurements between pairs of benchmarks. An electronic distance meter is an instrument that both sends and receives an electromagnetic signal. Depending on the distance between the EDM and reflector, the wavelength of the returned signal will be out of phase with the transmitted signal. The instrument compares the phase of the transmitted and received signals and measures the phase difference electronically. There is a wide range of EDM capabilities in range and precision, but for volcano monitoring purposes, short-range (less than 10 km) to medium-range (less than 50 km) EDM's are typically used. Short-range EDM's transmit and receive the near visible infrared part of the electromagnetic spectrum for measuring distances with an accuracy of about 5 mm.

A Comparative Study of Image Classification Method to Detect Water Body Based on UAS (UAS 기반의 수체탐지를 위한 영상분류기법 비교연구)

  • LEE, Geun-Sang;KIM, Seok-Gu;CHOI, Yun-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.113-127
    • /
    • 2015
  • Recently, there has been a growing interest in UAS(Unmanned Aerial System), and it is required to develop techniques to effectively detect water body from the recorded images in order to implement flood monitoring using UAS. This study used a UAS with RGB and NIR+RG bands to achieve images, and applied supervised classification method to evaluate the accuracy of water body detection. Firstly, the result for accuracy in water body image classification by RGB images showed high Kappa coefficients of 0.791 and 0.783 for the artificial neural network and minimum distance method respectively, and the maximum likelihood method showed the lowest, 0.561. Moreover, in the evaluation of accuracy in water body image classification by NIR+RG images, the magalanobis and minimum distance method showed high values of 0.869 and 0.830 respectively, and in the artificial neural network method, it was very low as 0.779. Especially, RGB band revealed errors to classify trees or grasslands of Songsan amusement park as water body, but NIR+RG presented noticeable improvement in this matter. Therefore, it was concluded that images with NIR+RG band, compared those with RGB band, are more effective for detection of water body when the mahalanobis and minimum distance method were applied.

An Adequate Band Selection for Vegetation Index of CASI-1500 Airborne Hyperspectral Imagery Using Image Differencing and Spectral Derivative (차연산과 분광미분을 이용한 항공 초분광영상의 식생지수 산출 적절밴드 선택)

  • Kim, Tae-Woo;We, Gwang-Jae;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.16-28
    • /
    • 2013
  • Recently the various applications and spectral indices development of airborne hyperspectral imagery(A-HSI) has been increased. Especially the vegetation indices (VIs) were used to verify stress and vigor of vegetation. The VIs needs two or more spectral bands selectively to calculate as NIR(near infrared) and red wavelength. The A-HIS has specific band characteristics as narrow, continues and many. The A-HIS has narrow, continues and many specific band characteristics. That could be make it confuse which of bands could be explained for appropriate vegetation characteristics. If the A-HIS bands is not the same the wavelength with VIs' development band setting, then it need a selection adequate for spectral characteristics of target vegetation. Therefore we set 4 substitute bands for NIR and red wavelength respectively and calculated two VIs combined with substitute bands such as NDVI(normalized difference vegetation index) and MSRI(modified simple ratio index). To consider the variation of each VIs, we adapted the image differencing method of change detection technique. Also, we used spectral derivative to identify appropriate bands for spectral characteristics of digital forest cover type map. The result of adequate bands for two VIs selected red #3 as 680.2nm and NIR #2 as 801.7nm. This wavelength was good for any forest type in low variations.

Development of a Personal Compound Stimulus Device for Skin-care (개인용 피부미용 복합자극기 개발)

  • Lee, Jeon;Kim, Chi-Hyun;Chung, Geum-Hee
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.12-19
    • /
    • 2012
  • Recently, the market of skin-care device has been steadily growing up. In this paper, we tried to develop a personal compound stimulus device more competitive than existing products. As the compound stimulus, biochemical stimulus of herbal extraction fluid, thermal stimulus of plate-shaped carbon fiber heater, and optical stimulus of near infrared LED were selected. By some evaluation tests, the thermal stimulation part and the optical stimulation part were found to be developed properly. Additionally, the efficacy of the mixed stimulus of thermal and optical stimulation was tested in C2C12 mouse myoblast. Through RT-PCR analysis, it was found that, by the developed compound stimulus, the expression of collagen I mRNA and collagen III mRNA increased by 4.9 and 1.3 times respectively.

Optical properties of $Ag_2CdSnSe_4$ and $Ag_2CdSnSe_4:CO^{2+}$ single crystals ($Ag_2CdSnSe_4$$Ag_2CdSnSe_4:Co^{+2}$단결정의 광학적 특성)

  • 이충일
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.16-21
    • /
    • 2001
  • Optical properties of $Ag_2CdSnSe_4$ and $Ag_2CdSnSe_4:Co^{+2}$ quaternary semiconductor single crystals grown by the chemical transport reaction method were investigated. The analysis of the X - ray powder diffraction measurements showed that these crystals have a wurtzite structure with lattice constants a = 4.357 $\AA$, c = 7.380 $\AA$, for $Ag_2CdSnSe_4$ and a = 4.885 $\AA$, c = 7.374 $\AA$, for $Ag_2CdSnSe_4:CO^{2+}$. The direct band gap at 298K, obtained from the optical absorption measurement, is found to be 1.21 eV for $Ag_2CdSnSe_4$ and 1.02 eV for $Ag_2CdSnSe_4:CO^{2+}$. The shrinkage of the band gap due to Co-doping is observed and is about 190 meV, We observed four absorption bands of $Co^{2+}$ ions in two near infrared regions of optical absorption spectra of $Ag_2CdSnSe_4$:$Co^{+2}$. These absorption bands were assigned as due to electronic transitions between the split energy levels of $Co^{2+}$ ions in $T_d$ crystal field under spin-orbit interactions.

  • PDF

Analysis of Electrical and Optical Characteristics of Silicon Based High Sensitivity PIN Photodiode (Silicon기반 고감도 PIN Photodiode의 전기적 및 광학적 특성 분석)

  • Lee, Jun-Myung;Kang, Eun-Young;Park, Keon-Jun;Kim, Yong-Kab;Hoang, Geun-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1407-1412
    • /
    • 2014
  • In order to improve spectrum sensitivity of photodiode for detection of the laser at 850 nm ~ 1000 nm of near-infrared wavelength band, this study has produced silicon-based fast film PIN photodiode and analyzed electrical and optical properties. The manufactured device is packaged in TO-18 type. The electrical properties of the dark currents both Anode 1 and Anode 2 have valued of approximately 0.055 nA for 5 V reverse bias, while the capacitance showed 19.5 pF at frequency range of 1 kHz and about 19.8 pF at the range of 200 kHz for 0 V. In addition, the rising time of output signal was verified to have fast response time of about 30 ns for 10 V. For the optical properties, the best spectrum sensitivity was 0.66 A/W for 880 nm, while it was relatively excellent value of 0.45 A/W for 1,000 nm.

Development of Automatic Sorting System for Black Plastics Using Laser Induced Breakdown Spectroscopy (LIBS) (LIBS를 이용한 흑색 플라스틱의 자동선별 시스템 개발)

  • Park, Eun Kyu;Jung, Bam Bit;Choi, Woo Zin;Oh, Sung Kwun
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.73-83
    • /
    • 2017
  • Used small household appliances have a wide variety of product types and component materials, and contain high percentage of black plastics. However, they are not being recycled efficiently as conventional sensors such as near-infrared ray (NIR), etc. are not able to detect black plastic by types. In the present study, an automatic sorting system was developed based on laser-induced breakdown spectroscopy (LIBS) to promote the recycling of waste plastics. The system we developed mainly consists of sample feeder, automatic position recognition system, LIBS device, separator and control unit. By applying laser pulse on the target sample, characteristic spectral data can be obtained and analyzed by using CCD detectors. The obtained data was then treated by using a classifier, which was developed based on artificial intelligent algorithm. The separation tests on waste plastics also were carried out by using a lab-scale automatic sorting system and the test results will be discussed. The classification rate of the radial basis neural network (RBFNNs) classifier developed in this study was about > 97%. The recognition rate of the black plastic by types with the automatic sorting system was more than 94.0% and the sorting efficiency was more than 80.0%. Automatic sorting system based on LIBS technology is in its infant stage and it has a high potential for utilization in and outside Korea due to its excellent economic efficiency.

Study of a Brain Tumor and Blood Vessel Detection System Using Multiple Fluorescence Imaging by a Surgical Microscope (수술현미경에서의 다중형광영상을 이용한 뇌종양과 혈관영상 검출 시스템 연구)

  • Lee, Hyun Min;Kim, Hong Rae;Yoon, Woong Bae;Kim, Young Jae;Kim, Kwang Gi;Kim, Seok Ki;Yoo, Heon;Lee, Seung Hoon;Shin, Min Sun;Kwon, Ki Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • In this paper, we propose a microscope system for detecting both a tumor and blood vessels in brain tumor surgery as fluorescence images by using multiple light sources and a beam-splitter module. The proposed method displays fluorescent images of the tumor and blood vessels on the same display device and also provides accurate information about them to the operator. To acquire a fluorescence image, we utilized 5-ALA (5-aminolevulinic acid) for the tumor and ICG (Indocyanine green) for blood vessels, and we used a beam-splitter module combined with a microscope for simultaneous detection of both. The beam-splitter module showed the best performance at 600 nm for 5-ALA and above 800 nm for ICG. The beam-splitter is flexible to enable diverse objective setups and designed to mount a filter easily, so beam-splitter and filter can be changed as needed, and other fluorescent dyes besides 5-ALA and ICG are available. The fluorescent images of the tumor and the blood vessels can be displayed on the same monitor through the beam-splitter module with a CCD camera. For ICG, a CCD that can detect the near-infrared region is needed. This system provides the acquired fluorescent image to an operator in real time, matching it to the original image through a similarity transform.

Analysis of Degradation Behaviors of Geomembrane by Accelerated Test under UV Exposure Conditions (자외선 노출조건 하에서 가속시험에 의한 지오멤브레인의 분해거동 해석)

  • Park, Yeong Mog;Khan, Belas Ahmed;Jeon, Han Yong
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.5-14
    • /
    • 2013
  • In this paper the effect of UV (ultraviolet) exposure on HDPE (high density polyethylene)-smooth and f-PP (flexible polypropylene) geomembranes is evaluated under UVB-313 (ultraviolet wavelength 290-315 nm) exposure. Tensile property, melt flow index (MFI), oxidation induction time (OIT), both standard-OIT and high pressure-OIT and Fourier transform infrared spectroscopy/attenuated total reflectance (FTIR/ATR) results are discussed. Although tensile properties of the exposed geomembrane samples remained unchanged, the depletion of antioxidants was found higher for f-PP than for HDPE geomembrane. Arrhenius model by extrapolation was used on the data to predict the antioxidant lifetime to a typical site temperature of $20^{\circ}C$. There was no significant difference between the MFI value of the virgin and UV exposed HDPE geomembrane samples but a decrease in MFI was found in f-PP geomembrane that signifies that crosslinking has occurred. From FTIR spectra, the small peak (near $1750\;cm^{-1}$) observed in the spectrum of UV exposed sample corresponds to a carbonyl (C=O) linkage, which suggests that oxidation has occurred in the polymer structure, and another new band for f-PP between 3100 and $3500\;cm^{-1}$ is attributed to a hydroxyl bond and/or hydroperoxide bond.