• Title/Summary/Keyword: Near infrared spectra

Search Result 361, Processing Time 0.027 seconds

Determination of Honey Quality by Near Infrared Spectroscopy (근적외선 분광분석법을 이용한 벌꿀의 품질평가)

  • Cho, Hyeon-Jong;Ha, Yeong-Lae
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.356-360
    • /
    • 2002
  • The honey samples harvested in 1996, 1997, and 1998 were used for calibration and validation. NIR spectra were obtained using NIR spectrometer and quartz glass device with gold coating diffuser. Multiple linear regression and partial least square were used for calibrations. The correlation coefficient (RSQ) and standard error of prediction (SEP) obtained for moisture were 0.997 and 0.1%, respectively. The RSQ and SEP for fructose and glucose were 0.926 and 0.951%, and the SEP were 0.54% and 0.52% respectively. The validation results for sucrose, maltose, HMF definition, and acidity of honey were considered to be sufficient for practical use RSQ and SEP for SCIR were 0.950 and $1.08%_{\circ}$, respectively. These results are indications of the rapid determination of purity of the honey through NIR analysis.

SAVITZKY-GOLAY DERIVATIVES : A SYSTEMATIC APPROACH TO REMOVING VARIABILITY BEFORE APPLYING CHEMOMETRICS

  • Hopkins, David W.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1041-1041
    • /
    • 2001
  • Removal of variability in spectra data before the application of chemometric modeling will generally result in simpler (and presumably more robust) models. Particularly for sparsely sampled data, such as typically encountered in diode array instruments, the use of Savitzky-Golay (S-G) derivatives offers an effective method to remove effects of shifting baselines and sloping or curving apparent baselines often observed with scattering samples. The application of these convolution functions is equivalent to fitting a selected polynomial to a number of points in the spectrum, usually 5 to 25 points. The value of the polynomial evaluated at its mid-point, or its derivative, is taken as the (smoothed) spectrum or its derivative at the mid-point of the wavelength window. The process is continued for successive windows along the spectrum. The original paper, published in 1964 [1] presented these convolution functions as integers to be used as multipliers for the spectral values at equal intervals in the window, with a normalization integer to divide the sum of the products, to determine the result for each point. Steinier et al. [2] published corrections to errors in the original presentation [1], and a vector formulation for obtaining the coefficients. The actual selection of the degree of polynomial and number of points in the window determines whether closely situated bands and shoulders are resolved in the derivatives. Furthermore, the actual noise reduction in the derivatives may be estimated from the square root of the sums of the coefficients, divided by the NORM value. A simple technique to evaluate the actual convolution factors employed in the calculation by the software will be presented. It has been found that some software packages do not properly account for the sampling interval of the spectral data (Equation Ⅶ in [1]). While this is not a problem in the construction and implementation of chemometric models, it may be noticed in comparing models at differing spectral resolutions. Also, the effects on parameters of PLS models of choosing various polynomials and numbers of points in the window will be presented.

  • PDF

The New Mass Estimator of Black Hole in Active Galaxies with Near Infrared Hydrogen Line

  • Kim, Do-Hyeong;Im, Myeong-Sin;Kim, Min-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.80-80
    • /
    • 2010
  • About 50% of Active Galactic Nuclei(AGNs) are found to be red and dust-obscured. They are believed to be in an early dusty stage of AGNs evolution or affected by dust torus in the direction of line of sight. However, optical spectrum is affected by dust extinction, making it difficult to study their properties, such as FWHM and luminosity. In order to reveal the mass of central Black Hole(BH) in red AGN, we establish a new BH mass estimator for typical type1 AGNs using Near InfraRed(NIR) hydrogen line($P_{\alpha}$ and $P_{\beta}$), since these lines are at longer wavelength, less affected by dust extinction than optical hydrogen lines, such as $H_{\alpha}$ and $H_{\alpha}$. To derive the new empirical formula, we use a sample of well-known 36 AGN with a wide BH mass range of $10^6-10^9\;M_{\odot}$, where $M_{BH}s$ are estimated by reverberation mapping method and single epoch method. The $P_{\alpha}/P_{\beta}$ luminosities and FWHMs are derived by analyzing IRTF NIR spectra or taken from literature values. We show that luminosities and FWHMs of these lines correlate well with those of Balmer lines. Suggesting that Paschen and Balmer broad lines are originated from same region. Finally, we present the new $M_{BH}$ formula that are based on $P_{\alpha}/P_{\beta}$ luminosity and FWHM. We hope that our result will be used for investigating red AGNs.

  • PDF

Statistical Analysis of Protein Content in Wheat Germplasm Based on Near-infrared Reflectance Spectroscopy (밀 유전자원의 근적외선분광분석 예측모델에 의한 단백질 함량 변이분석)

  • Oh, Sejong;Choi, Yu Mi;Yoon, Hyemyeong;Lee, Sukyeung;Yoo, Eunae;Hyun, Do Yoon;Shin, Myoung-Jae;Lee, Myung Chul;Chae, Byungsoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.353-365
    • /
    • 2019
  • A near-infrared reflectance spectroscopy (NIRS) prediction model was set to establish a rapid analysis system of wheat germplasm and provide statistical information on the characteristics of protein contents. The variability index value (VIV) of calibration resources was 0.80, the average protein content was 13.2%, and the content range was from 7.0% to 13.2%. After measuring the near-infrared spectra of calibration resources, the NIRS prediction model was developed through a regression analysis between protein content and spectra data, and then optimized by excluding outliers. The standard error of calibration, R2, and the slope of the optimized model were 0.132, 0.997, and 1.000 respectively, and those of external validation results were 0.994, 0.191, and 1.013, respectively. Based on these results, a developed NIRS model could be applied to the rapid analysis of protein in wheat. The distribution of NIRS protein content of 6,794 resources were analyzed using a normal distribution analysis. The VIV was 0.79, the average protein was 12.1%, and the content range of resources accounting for 42.1% and 68% of the total accessions were 10-13% and 9.5-14.6%, respectively. The composition of total resources was classified into breeding line (3,128), landrace (2,705), and variety (961). The VIV in breeding line was 0.80, the protein average was 11.8%, and the contents of 68% of total resources ranged from 9.2% to 14.5%. The VIV in landrace was 0.76, the protein average was 12.1%, and the content range of resources of 68% of total accessions was 9.8-14.4%. The VIV in variety was 0.80, the protein average was 12.8%, and the accessions representing 68% of total resources ranged from 10.2% to 15.4%. These results should be helpful to the related experts of wheat breeding.

Determination of the water content in citrus leaves by portable near infrared (NIR) system (근적외분광분석법을 이용한 감귤잎의 수분 측정)

  • Suh, Eun-Jung;Woo, Young-Ah;Lim, Hun-Rang;Kim, Hyo-Jin;Moon, Doo-Gyung;Choi, Young-Hun
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.277-282
    • /
    • 2003
  • The amount of water for the cultivation of citrus is different based on the growing period. The effect of water stress induces to enhance of sugar accumulation in citrus. The water content in the leaves of citrus can be a index for watering during cultivation. The purpose of this study is to determine the water content of citrus leaves non-destructively by using near infrared spectroscopy (NIRS). Citrus leaves were prepared from 'Okitsu' Satusuma mandarin leaves (Citrus unshiu Marc.) ranging from 20.80 to 69.98% of water content by loss on drying method, and NIR reflectance spectra of citrus leaves were acquired by using a fiber optic probe. It was found that the variation of absorbance band 1450 nm from OH vibration of water depending on the water content change. Partial least squares regression (PLSR) was applied to develop a calibration model over the spectral range 1100-1700 nm. The calibration model predicted the water content for the validation set with a standard errors of prediction (SEP) of 0.97%. In order to validate the developed calibration model, routine analyses were performed using independently prepared citrus leaves. The NIR routine analyses showed good results with those of loss on drying method with a SEP of 0.81%. The rapid and non-destructive determination of the water content in citrus leaves was successfully performed by portable NIR system.

The Use of Near Infrared Reflectance Spectroscopy (NIRS) for Broiler Carcass Analysis

  • Hsu, Hua;Zuidhof, Martin J.;Recinos-Diaz, Guillermo;Wang, Zhiquan
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1510-1510
    • /
    • 2001
  • NIRS uses reflectance signals resulting from bending and stretching vibrations in chemical bonds between carbon, nitrogen, hydrogen, sulfur and oxygen. These reflectance signals are used to measure the concentration of major chemical composition and other descriptors of homogenized and freeze-dried whole broiler carcasses. Six strains of chicken were analyzed and the NIRS model predictions compared to reference data. The results of this comparison indicate that NIRS is a rapid tool for predicting dry matter (DM), fat, crude protein (CP) and ash content in the broiler carcass. Males and females of six commercial strain crosses of broiler chicken (Gallus domesticus) were used in this study (6$\times$2 factorial design). Each strain was grown to 16 weeks of age, and duplicate serial samples were taken for body composition analysis. Each whole carcass was pressure-cooked, homogenized, and a representative sample was freeze-dried. Body composition determined as follows: DM by oven dried method at 105$^{\circ}C$ for 3 hours, fat by Mojonnier diethyl ether extraction, CP by measuring nitrogen content using an auto-analyzer with Kjeldhal digest and ash by combustion in a muffle furnace for 24 hour at 55$0^{\circ}C$. These homogenized and freeze-dried carcass samples were then scanned with a Foss NIR Systems 6500 visible-NIR spectrophotometer (400-2500nm) (Foss NIR Systems, Silver Spring, MD., US) using Infra-Soft-International, ISI, WinISl software (ISI, Port Matilda, US). The NIRS spectra were analyzed using principal component (PC) analysis. This data was corrected for scatter using standard normal “Variate” and “Detrend” technique. The accuracy of the NIRS calibration equations developed using Partial Least Squares (PLS) for predicting major chemical composition and carcass descriptors- such as body mass (BM), bird dry matter and moisture content was tested using cross validation. Discrimination analysis was also used for sex and strain identification. According to Dr John Shenk, the creator of the ISI software, the calibration equations with the correlation coefficient, $R^2$, between reference data and NIRS predicted results of above 0.90 is excellent and between 0.70 to 0.89 is a good quantifying guideline. The excellent calibration equations for DM ($R^2$= 0.99), fat (0.98) and CP (0.92) and a good quantifying guideline equation for ash (0.80) were developed in this study. The results of cross validation statistics for carcass descriptors, body composition using reference methods, inter-correlation between carcass descriptors and NIRS calibration, and the results of discrimination analysis for sex and strain identification will also be presented in the poster. The NIRS predicted daily gain and calculated daily gain from this experiment, and true daily gain (using data from another experiment with closely related broiler chicken from each of the six strains) will also be discussed in the paper.

  • PDF

Development of Moisture Content Prediction Model for Larix kaempferi Sawdust Using Near Infrared Spectroscopy (근적외선 분광분석법을 이용한 낙엽송 목분의 함수율 예측 모델 개발)

  • Chang, Yoon-Seong;Yang, Sang-Yun;Chung, Hyunwoo;Kang, Kyu-Young;Choi, Joon-Weon;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.304-310
    • /
    • 2015
  • The moisture content of sawdust must be measured accurately and controlled appropriately during storage and transportation because biological degradation could be caused by improper moisture. In this study, to measure the moisture contents of Larix kaempferi sawdust, the near-infrared reflectance spectra (Wavelength 1000-2400 nm) of sawdust were used as detection parameter. After acquiring the NIR reflection spectrum of specimens which were humidified at each relative humidity condition ($25^{\circ}C$, RH 30~99%), moisture content prediction model was developed using mathematical preprocessings (e.g. smoothing, standard normal variate) and partial least squares (PLS) analysis with the acquired spectrum data. High reliability of the MC regression model with NIR spectroscopy was verified by cross validation test ($R^2$ = 0.94, RMSEP = 1.544). The results of this study show that NIR spectroscopy could be used as a convenient and accurate method for the nondestructive determination of moisture content of sawdust, which could lead to optimize wood utilization.

Prediction from Linear Regression Equation for Nitrogen Content Measurement in Bentgrasses leaves Using Near Infrared Reflectance Spectroscopy (근적외선 분광분석기를 이용한 잔디 생체잎의 질소 함량 측정을 위한 검량식 개발)

  • Cha, Jung-Hoon;Kim, Kyung-Duck;Park, Dae-Sup
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.77-90
    • /
    • 2009
  • Near Infrared Reflectance Spectroscopy(NIRS) is a quick, accurate, and non-destructive method to measure multiple nutrient components in plant leaves. This study was to acquire a liner regression equation by evaluating the nutrient contents of 'CY2' creeping bentgrass rapidly and accurately using NIRS. In particular, nitrogen fertility is a primary element to keep maintaining good quality of turfgrass. Nitrogen, moisture, carbohydrate, and starch were assessed and analyzed from 'CY2' creeping bentgrass clippings. A linear regression equation was obtained from accessing NIRS values from NIR spectrophotometer(NIR system, Model XDS, XM-1100 series, FOSS, Sweden) programmed with WinISI III project manager v1.50e and ISIscan(R) (Infrasoft International) and calibrated with laboratory values via chemical analysis from an authorized institute. The equation was formulated as MPLS(modified partial least squares) analyzing laboratory values and mathematically pre-treated spectra. The accuracy of the acquired equation was confirmed with SEP(standard error of prediction), which indicated as correlation coefficient($r^2$) and prediction error of sample unacquainted, followed by the verification of model equation of real values and these monitoring results. As results of monitoring, $r^2$ of nitrogen, moisture, and carbohydrate in 'CY2' creeping bentgrass was 0.840, 0.904, and 0.944, respectively. SEP was 0.066, 1.868, and 0.601, respectively. After outlier treatment, $r^2$ was 0.892, 0.925, and 0.971, while SEP was 0.052, 1.577, and 0.394, respectively, which totally showed a high correlation. However, $r^2$ of starch was 0.464, which appeared a low correlation. Thereof, the verified equation appearing higher $r^2$ of nitrogen, moisture, and carbohydrate showed its higher accuracy of prediction model, which finally could be put into practical use for turf management system.

Prediction of the Chemical Composition and Fermentation Parameters of Fresh Coarse Italian Ryegrass Haylage using Near Infrared Spectroscopy

  • Kim, Ji Hye;Park, Hyung Soo;Choi, Ki Choon;Lee, Sang Hoon;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Near infrared spectroscopy (NIRS) is a rapid and accurate method for analyzing the quality of cereals, and dried animal forage. However, one limitation of this method is its inability to measure fermentation parameters in dried and ground samples because they are volatile, and therefore, respectively lost during the drying process. In order to overcome this limitation, in this study, fresh coarse haylage was used to test the potential of NIRS to accurately determine chemical composition and fermentation parameters. Fresh coarse Italian ryegrass haylage samples were scanned at 1 nm intervals over a wavelength range of 680 to 2500 nm, and optical data were recorded as log 1/reflectance. Spectral data, together with first- and second-order derivatives, were analyzed using partial least squares (PLS) multivariate regressions; scatter correction procedures (standard normal variate and detrend) were used in order to reduce the effect of extraneous noise. Optimum calibrations were selected based on their low standard error of cross validation (SECV) values. Further, ratio of performance deviation, obtained by dividing the standard deviation of reference values by SECV values, was used to evaluate the reliability of predictive models. Our results showed that the NIRS method can predict chemical constituents accurately (correlation coefficient of cross validation, $R_{cv}^2$, ranged from 0.76 to 0.97); the exception to this result was crude ash ($R_{cv}^2=0.49$ and RPD = 2.09). Comparison of mathematical treatments for raw spectra showed that second-order derivatives yielded better predictions than first-order derivatives. The best mathematical treatment for DM, ADF, and NDF, respectively was 2, 16, 16, whereas the best mathematical treatment for CP and crude ash, respectively was 2, 8, 8. The calibration models for fermentation parameters had low predictive accuracy for acetic, propionic, and butyric acids (RPD < 2.5). However, pH, and lactic and total acids were predicted with considerable accuracy ($R_{cv}^2$ 0.73 to 0.78; RPD values exceeded 2.5), and the best mathematical treatment for them was 1, 8, 8. Our findings show that, when fresh haylage is used, NIRS-based calibrations are reliable for the prediction of haylage characteristics, and therefore useful for the assessment of the forage quality.

Establishment of a Nondestructive Analysis Method for Lignan Content in Sesame using Near Infrared Reflectance Spectroscopy (근적외선분광(NIRS)을 이용한 참깨의 lignan 함량 비파괴 분석 방법 확립)

  • Lee, Jeongeun;Kim, Sung-Up;Lee, Myoung-Hee;Kim, Jung-In;Oh, Eun-Young;Kim, Sang-Woo;Kim, MinYoung;Park, Jae-Eun;Cho, Kwang-Soo;Oh, Ki-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • Sesamin and sesamolin are major lignan components with a wide range of potential biological activities of sesame seeds. Near infrared reflectance spectroscopy (NIRS) is a rapid and non-destructive analysis method widely used for the quantitative determination of major components in many agricultural products. This study was conducted to develop a screening method to determine the lignan contents for sesame breeding. Sesamin and sesamolin contents of 482 sesame samples ranged from 0.03-14.40 mg/g and 0.10-3.79 mg/g with an average of 4.93 mg/g and 1.74 mg/g, respectively. Each sample was scanned using NIRS and calculated for the calibration and validation equations. The optimal performance calibration model was obtained from the original spectra using partial least squares (PLS). The coefficient of determination in calibration (R2) and standard error of calibration (SEC) were 0.963 and 0.861 for sesamin and 0.875 and 0.292 for sesamolin, respectively. Cross-validation results of the NIRS equation showed an R2 of 0.889 in the prediction for sesamin and 0.781 for sesamolin and a standard error of cross-validation (SECV) of 1.163 for sesamin and 0.417 for sesamolin. The results showed that the NIRS equation for sesamin and sesamolin could be effective in selecting high lignan sesame lines in early generations of sesame breeding.