• 제목/요약/키워드: NdFeCoB

검색결과 103건 처리시간 0.026초

주조 및 열간압축된 Pr, Nd-Fe-B계 영구자석의 열자기 분석과 자기적 특성 (Magnetic Properties and Thermomagnetic Analysis of Cast and Hot-Pressed Pr, Nd-Fe-B Magnets)

  • 김동엽;이동구;정원용
    • 한국자기학회지
    • /
    • 제2권1호
    • /
    • pp.37-43
    • /
    • 1992
  • Pr, Nd-Fe-B계 합금을 주조 및 열간압축한 후 직류자화측정기와 진동시료형 자속계를 이용하여 자기적 특성을 측정하였다. 이 결과로부터 제 2상과 보자력과의 관계를 조사하였다. 주조시 $Pr_{17}Fe_{76.5}B_{5}Cu_{1.5}$계 합금에는 ${\alpha}-Fe$가, $Nd_{14}Dy_{1}Fe_{78.5}B_{5}Cu_{1.5}$계 합금에는 $Nd_{2}Fe_{17}$상이 각각 생성 되었다. 생성된 제 2상은 R(R=Pr, Nd)-Fe-B계 주조합금의 자기적 특성을 저하시킨다. 주조합금을 열처리하면 열자기분석 곡선에서 ${\alpha}-Fe$, $Nd_{2}Fe_{17}$상이 확인되지 않았다. 열처리 시 이와 같은 연자성상이 제거됨에 따라 열처리된 Pr, Nd-Fe-B계 주소합금의 자기적 특성은 증가하였다. Nd-Fe-B-Cu계 열간압축 자석에서의 보자력의 온도계수($\beta$)는 0.48로, 이를 Nd-Fe-B계 소결자석의 ${\beta}=0.86$, Nd-Fe-Co-B계 소결자석의 ${\beta}=0.5$와 비교해 보면 열간압축된 자석이 우수한 열적안정성을 나타냄을 알 수 있었다.

  • PDF

Enhanced Exchange Coupling of $Nd_2Fe_{14}B/Fe_3B$ Magnet Via Magnetic Field Treatment

  • Choong Jin Yang;Con Byung Park
    • Journal of Magnetics
    • /
    • 제1권1호
    • /
    • pp.31-36
    • /
    • 1996
  • An externally applied magnetic field during heat treating the $Nd_2Fe_{14}B/Fe_3B$ based spring magnet was found to enhance the exchange coupling between the hard and soft magnetic grains. More than 30% increase in $M_r/M_s$ values for melt-spun $Nd_2Fe_{73.5}Co_3$$(Hf_{1-x}Ga_x)B_{18.5}$ (x=0, 0.5, 1) alloys was resulted from a uniform distribution of $Fe_3B, \alpha-Fe$ and $Nd_2Fe_{14}B$ phases, and also from a reduced grain size of those phases by 20%. The externally applied magnetic field induced a uniform distribution of fine grains. A study of Mossbauer effect also report that the enhancement of total magnetization of nanocomposite $Nd_2Fe_{14}B/Fe_3B$ alloys is attributed to an increased formation of $Fe_3$B after magnetic annealing.

  • PDF

Nd-Fe-B 소결자석의 소결 후 열처리 조건에 따른 미세조직 및 자기적 특성 변화 (Influence of Post-Sintering Annealing Conditions on the Microstructure and Magnetic Properties of Nd-Fe-B Magnet)

  • 정윤종;홍순직;김동환;배경훈;송기안
    • 열처리공학회지
    • /
    • 제37권1호
    • /
    • pp.9-15
    • /
    • 2024
  • Nd-Fe-B permanent magnets have been utilized on various industrial fields such as electric vehicles, generator, robots with actuator, etc, due to their outstanding magnetic properties even 10 times better than conventional magnets. Recently, there are many researches that report magnetic properties improved by controlling microstructure through adjusting alloying elements or conducting various processing. Especially, post-sintering annealing (PSA) can significantly improve the coercivity by modifying the distribution and morphology of Nd-rich phase which formed at grain boundaries. In this study, Nd-Fe-B sintered magnets were subjected to primary heat treatment followed by secondary heat treatment at 460℃, 500℃, and 540℃ to investigate the changes in microstructure and magnetic properties with the secondary heat treatment temperature. EBSD analysis was conducted to compare anisotropic characteristics. Through the SEM and TEM observation for analyzing the morphology and distribution of Nd-rich phase, we investigated the relationship between microstructure and magnetic properties of sintered Nd-Fe-B magnets.

A Metallurgical Study on Sputtered thin Film Magnet of high $_{i}\textrm{H}_{c}$ Nd-(Fe, Co)-B alloy and Magnetic

  • Kang, Ki-Won;Kim, Jin-Ku;Song, Jin-Tae
    • 한국재료학회지
    • /
    • 제4권5호
    • /
    • pp.535-540
    • /
    • 1994
  • Thin film magnet was fabricated by radio frequency magnetron sputtering using $Nd_13/(Fe.Co)_{70}B_{17}$ alloy target and magnetic properties were investigated according to sputtering conditions from the metallurgical point of view. we could obtain the best preferred orientation of $Nd_2Fe_{14}B$ phase at substrate temperatures between $450^{\circ}C$ and $460^{\circ}C$ with the input power 150W, and thin films had the anisotropic magnetic properties. But, as the thickness of thin film increased, the c-axis orientation gradually tended to be disordered and magnetic properties also become isotropic. Just like Nd-Fe-B meltspun ribbon, the microstructure of thin film magnet was consisted of very find cell shaped $Nd_2Fe_{14}B$ phase and the second phase along grain boundary. While, domain structure showed maze patterns whose magnetic easy axis was was perpendicular to film plane of thin film. It was concluded from these results that the perpendicualr anisotropy in magnetization was attributed to the perpendicular alignment of very find $Nd_2Fe_{14}B$ grains in thin film.

  • PDF