• Title/Summary/Keyword: Nd-substituted

Search Result 65, Processing Time 0.019 seconds

Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.663-669
    • /
    • 2012
  • The nucleophilic substitution reactions of dibutyl chlorophosphate (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; kH/kD) are secondary inverse ($k_H/k_D$ = 0.86-0.97) with the strongly basic anilines while primary normal ($k_H/k_D$ = 1.04-1.10) with the weakly basic anilines. The DKIEs, steric effects of the two ligands, activation parameters, cross-interaction constants, variation trends of the kH/kD values with X, and mechanism are discussed for the anilinolyses of the nine ($R_1O$)($R_2O$)P(=O)Cl-type chlorophosphates. A concerted mechanism is proposed with a backside nucleophilic attack transition state for the strongly basic anilines and with a frontside attack involving a hydrogen-bonded four-center-type transition state for the weakly basic anilines on the basis of the magnitudes, secondary inverse and primary normal, and variation trends of the $k_H/k_D$ values with X.

Kinetics and Mechanism of the Anilinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl -5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1037-1041
    • /
    • 2012
  • The nucleophilic substitution reactions of (2R,4R,5S)-(+)-2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $5.0^{\circ}C$. The anilinolysis rate of 3 involving a cyclic five-membered ring is considerably fast because of small negative value of the entropy of activation (${\Delta}S^\neq=-2cal\;mol^{-1}\;K^{-1}$) over considerably unfavorable enthalpy of activation (${\Delta}H^\neq=18.0\;kcal\;mol^{-1}$). Great enthalpy and small negative entropy of activation are ascribed to sterically congested transition state (TS) and bulk solvent structure breaking in the TS. A concerted $S_N2$ mechanism with a backside nucleophilic attack is proposed on the basis of the secondary inverse deuterium kinetic isotope effects, $k_H/k_D$ < 1.

Recycling of Waste Cellulose Biomass - I. Synthesis of Cellulose Acetate and Mehtylcellulose from Waste Cellulose - (폐 cellulose계 biomass 자원의 재활용 - I. 목면 폐기물로부터 cellulose acetate 및 methyl cellulose 합성 -)

  • 이성구;최길영;김수진;정우영;조순채;이종문
    • Textile Coloration and Finishing
    • /
    • v.5 no.3
    • /
    • pp.221-228
    • /
    • 1993
  • Cellulose acetate and methyl cellulose were synthesized from waste cellulose in order to make waste knit on value added highly. Crystal waste cellulose by oxidation using $HIO_4$ and then acetylation was decrystallized. A degee of crystallinity was measured by X-ray diffraction and the structure was identified by FT-IR spetroscopy, respectively. Cellulose acetate was prepared from the reaction of decrystallized cellulose with acetic acid, cone-$H_{2}SO_{4}$ and acetic anhydride. Also, structure identification by FT-IR and a degree of crystallinity by X-ray diffraction were performed. DS of the synthesized cellulose acetate was 2.8 and viscosity average molecular weight was 238,000. Also, methyl cellulose was synthesized by treating cellulose acetate with NaOH and iodomethane. DS of the synthesized methyl cellulose was 3.0. Glucose unit with three hydroxy groups was all substituted by methoxyl groups. It was identified by FT-IR spectroscopy. Also, the thermal properties of the synthesized methyl cellulose were examined by DSC. It shewed two shewed melting peaks at 22$0^{\circ}C$ and 24$0^{\circ}C$ in the 2nd scan. It proved that DS=3.0 of methyl cellulose was a thermotropic liquid crystal.

  • PDF

Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1939-1944
    • /
    • 2011
  • The nucleophilic substitution reactions of bis(Y-aryl) chlorophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at 35.0 $^{\circ}C$. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorophosphates (2). The substrate 1 has one more identical substituent Y compared to substrate 2. The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of cross-interaction constant (CIC) from negative ${\rho}_{XY}$ = -1.31 (2) to positive ${\rho}_{XY}$ = +1.91 (1), indicating the change of reaction mechanism from a concerted $S_N2$ (2) to a stepwise mechanism with a rate-limiting leaving group departure from the intermediate (1). The deuterium kinetic isotope effects (DKIEs) involving deuterated anilines ($XC_6H_4ND_2$) show secondary inverse, $k_H/k_D$ = 0.61-0.87. The DKIEs invariably increase as substituent X changes from electron-donating to electron-withdrawing, while invariably decrease as substituent Y changes from electron-donating to electron-withdrawing. A stepwise mechanism with a rate-limiting bond breaking involving a predominant backside attack is proposed on the basis of positive sign of ${\rho}_{XY}$ and secondary inverse DKIEs.

Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1997-2002
    • /
    • 2011
  • The nucleophilic substitution reactions of dicyclohexyl phosphinic chloride [3; $cHex_2$P(=O)Cl] with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at 60.0 $^{\circ}C$. The anilinolysis rate is too slow to be rationalized by the stereoelectronic effects. The rate is contrary to expectations for the electronic influence of the two ligands and exhibits exceptionally great negative deviation from the Taft's eq. The deuterium kinetic isotope effects (DKIEs) involving deuterated anilines invariably change from primary normal ($k_H/k_D$ > 1; max $k_H/k_D$ = 1.10 with X = 4-MeO) with the strongly basic anilines (X = 4-MeO, 4-Me, 3-Me) to secondary inverse ($k_H/k_D$ < 1; min $k_H/k_D$ = 0.673 with X = 3-Cl) with the weakly basic anilines (X = H, 4-F, 4-Cl, 3-Cl). A concerted $S_N2$ mechanism is proposed on the basis of both secondary inverse and primary normal DKIEs. The obtained DKIEs imply that the fraction of a frontside attack increases as the aniline becomes more basic. A hydrogen-bonded, four-center-type transition state is suggested for a frontside attack, while the trigonal bipyramidal pentacoordinate transition state is suggested for a backside attack.

Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3355-3360
    • /
    • 2011
  • The nucleophilic substitution reactions of 1,2-phenylene phosphorochloridate (1) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $-15.0^{\circ}C$. The studied substrate of 1,2-phenylene phosphorochloridate is cyclic five-membered ring of phosphorus ester, and the anilinolysis rate of 1 is much faster than its acyclic analogue (4: ethyl phenyl chlorophosphate) because of extremely small magnitude of the entropy of activation of 1 compared to 4. The Hammett and Bronsted plots exhibit biphasic concave upwards for substituent X variations in the nucleophiles with a break point at X = 3-Me. The values of deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) change from secondary inverse ($k_H/k_D$ < 1) with the strongly basic anilines to primary normal ($k_H/k_D$ > 1) with the weakly basic anilines. The secondary inverse with the strongly basic anilines and primary normal DKIEs with the weakly basic anilines are rationalized by the transition state (TS) variation from a predominant backside attack to a predominant frontside attack, in which the reaction mechanism is a concerted $S_N2$ pathway. The primary normal DKIEs are substantiated by a hydrogen bonded, four-center-type TS.

Kinetics and Mechanism of the Anilinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4361-4365
    • /
    • 2011
  • The nucleophilic substitution reactions of bis(N,N-dimethylamino) phosphinic chloride (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $65.0^{\circ}C$. The anilinolysis rate of 3 is rather slow to be rationalized by the conventional stereoelectronic effects. The magnitudes of ${\rho}_X$ (= -6.42) and ${\beta}_X$ (= 2.27) values are exceptionally great. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are secondary inverse ($k_H/k_D$ = 0.69-0.96). A concerted $S_N2$ mechanism involving a backside attack is proposed on the basis of secondary inverse DKIEs and the variation trend of the $k_H/k_D$ values with X. The anilinolyses of six phosphinic chlorides in MeCN are briefly reviewed by means of DKIEs, steric effects of the two ligands, positive charge of the reaction center phosphorus atom, and selectivity parameters to obtain systematic information on phosphoryl transfer reaction mechanism.

Editing of Genomic TNFSF9 by CRISPR-Cas9 Can Be Followed by Re-Editing of Its Transcript

  • Lee, Hyeon-Woo
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.917-922
    • /
    • 2018
  • The CRISPR-Cas system is a well-established RNA-guided DNA editing technique widely used to modify genomic DNA sequences. I used the CRISPR-Cas9 system to change the second and third nucleotides of the triplet $T{\underline{CT}}$ of human TNSFSF9 in HepG2 cells to $T{\underline{AG}}$ to create an amber stop codon. The $T{\underline{CT}}$ triplet is the codon for Ser at the $172^{nd}$ position of TNSFSF9. The two substituted nucleotides, AG, were confirmed by DNA sequencing of the PCR product followed by PCR amplification of the genomic TNFSF9 gene. Interestingly, sequencing of the cDNA of transcripts of the edited TNFSF9 gene revealed that the $T{\underline{AG}}$ had been re-edited to the wild type triplet $T{\underline{CT}}$, and 1 or 2 bases just before the triplet had been deleted. These observations indicate that CRISPR-Cas9-mediated editing of bases in target genomic DNA can be followed by spontaneous re-editing (correcting) of the bases during transcription.

Synthesis of Hapten for Indirect Competitive Immunoassay for Measuring 3,5,6-trichloro-2-pyridinol

  • Kim, Areumnuri;Kim, Joong-Young;Jeong, Sang-Hee;Cho, Myung-Haing;Park, Kyung-Hun;Cho, Namjun;Paik, Min Kyoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.345-349
    • /
    • 2015
  • BACKGROUND: In this study, we have attempted to identify a urinary biomarker to assess chlorpyrifos exposure in farmers. The major metabolite and the excretion pathway of chlorpyrifos is 3,5,6-trichloro-2-pyridinol (TCP) in urine. Herein, we describe an adequate synthetic method for TCP hapten for measuring urinary TCP of farmers. METHODS AND RESULTS: First, TCP was prepared by spacer attachment through hydrolysis of thiophosphate ester from chlorpyrifos. After reaction with benzyl bromide, the TCP was transformed into 2,3,5-trichloro-6-benzyloxypyridine. Next, the chlorine in the 2 nd position of the pyridyl ring was substituted into 3-mercaptopropanoic acid spacer arm. Finally, the phenyl group attached to the 6 th position in pyridyl ring was removed for producing the targeted product, 3-(3,5-Dichloro-6-hydroxy-2-pyridyl) thiopropanoic acid. CONCLUSION: Henceforth, this TCP hapten would be used in developing immunoassay studies for the detection and quantitation of urinary TCP of farmers.

The Analysis on Exergy Loss and its Reduction Methods in Steam Desuperheating and Depressurizing Process (증기의 감온·감압과정에서의 엑서지 손실 및 저감방안 분석)

  • Yi, Joong Yong;Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.19-26
    • /
    • 2015
  • The present paper presented and applied an exergy analysis method to evaluate the magnitudes and the locations of exergy losses in the conventional desuperheating and depressurizing process of high pressure and temperature steam delivery system. In addition, for the reduction of exergy losses occurred in conventional process, the present study proposed new alternative processes in which the pressure reducing valve and the desuperheater of conventional process are substituted with steam turbine and heat exchanger, and their effects on exergy loss reduction and exergy efficiency improvement are theoretically investigated and compared. From the present analysis results, the total exergy loss caused in conventional desuperheating and depressurizing process accounted for 66.5% of exergy input and 85% of the total exergy loss was due to the mixing between steam and cold water(e.g desuperheating). However, it was shown from the present analysis results that the present alternative processes can additionally reduce exergy loss by maximum 92.7% of the total exergy loss in conventional process, and can also produce additional and useful energy, the electricity of 220.6 kWh and the heat of 54.3 MJ/hr.