• Title/Summary/Keyword: Nd-Fe-B magnets

Search Result 199, Processing Time 0.032 seconds

Dynamic Characteristics of Moving Coil Type Linear Oscillatory Actuator (가동코일형 리니어 왕복 액추에이터의 동특성)

  • Jang, S.M.;Jeong, S.S.;Kweon, C.;Park, H.C.;Moon, S.J.;Park, C.I.;Chung, T.Y.
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.180-187
    • /
    • 2000
  • A moving-coil-type linear oscillatory actuator(LOA) consists of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure. The LOA system was represented by the voltage equation of coil and the mechanical equation of motion. This set of equations was manipulated in state-space form. The EMF constant kE of equation parameters in state-space form can be obtained by using the induced voltage in armature coils at open circuit test. kE and other parameters provide the system matrices and transfer function for frequency response and dynamic simulation. Voltage source inverter-fed LOA is examined aiming to compare with results of simulation.

  • PDF

Analysis of Permanent Magnet Eddy Current Loss by Permanent Magnet Attaching Method of Magnetic Gears (마그네틱 기어의 영구자석 부착방법에 따른 영구자석 와전류손실 분석)

  • Park, Eui-Jong;Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.911-915
    • /
    • 2017
  • Recently, there has been an increasing interest in the non-contact power transmission method of magnetic gears. Since there is no mechanical contact, noise caused by friction can be reduced, and even if a sudden large force is applied, the impact of the gear is close to zero. Further, since the power is transmitted by the magnetic flux, it has high reliability. However, there is a problem that a loss due to a magnetic field due to use of a magnetic flux. The loss caused by the magnetic field of the magnetic gear is a joule loss called eddy current loss. In addition, the eddy current loss in the magnetic gear largely occurs in the permanent magnet, but it is a fatal loss to the permanent magnet which is vulnerable to heat. Particularly, magnetic gears requiring high torque density use NdFeB series permanent magnets, and this permanent magnets have a characteristic in which the magnetic force decreases as temperature increases. Therefore, in this paper, the eddy current loss of the permanent magnet according to the permanent magnet attaching method is analyzed in order to reduce the eddy current loss of the permanent magnet. We have proposed a structure that can reduce the eddy current loss through the analysis and show the effect of reducing the loss of the proposed structure.

Development of a Large Capacity Hybrid-Type Linear Motor Damper for the vibration Control of Building Structures (건축 구조물의 진동 제어용 하이브리드형 대용량 리니어 모터 댐퍼의 개발)

  • Jeong, Sang-Seop;Jang, Seok-Myeong;Lee, Seong-Ho;Yun, In-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.601-611
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and sqring is one aproach to safeguarding the structure against excessive vibrations. In this paper, a large capacity hybrid-type linear motor damper(LMD) was designed and fabricated for the application to the vibration control of a large building structure model. It has been designed to be able to move the damper mass, 1,500 kg up to ${\pm}250mm$ strokes at the first mode natural frequency of the building structure model, ${\pm}0.51Hz$. Linear motor is consisted of the fixed coil and the movable NdFeB permanent magnets field part. The PM field part composed magnet modules and iron yoke, is the damper mass itself, 1500kg. LMD therefore has a simplified structure and requires a few elements in the driving system, being compared with a rotary motor damper and a hydraulic damper. However, the manufacture of large PM linear actuator is difficult because of the limit of PM size and the attraction and repulsion at the assembly of PM. Therefore, large damper system is manufactured and tested for dynamic characteristics and frequency response.

Plasma source ion implantations for shallow $p^+$/n junction

  • Jeonghee Cho;Seuunghee Han;Lee, Yeonhee;Kim, Lk-Kyung;Kim, Gon-Ho;Kim, Young-Woo;Hyuneui Lim;Moojin Suh
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.180-180
    • /
    • 2000
  • Plasma source ion implantation is a new doping technique for the formation of shallow junction with the merits of high dose rate, low-cost and minimal wafer charging damage. In plasma source ion implantation process, the wafer is placed directly in the plasma of the appropriate dopant ions. Negative pulse bias is applied to the wafer, causing the dopant ions to be accelerated toward the wafer and implanted below the surface. In this work, inductively couples plasma was generated by anodized Al antenna that was located inside the vacuum chamber. The outside wall of Al chamber was surrounded by Nd-Fe-B permanent magnets to confine the plasma and to enhance the uniformity. Before implantation, the wafer was pre-sputtered using DC bias of 300B in Ar plasma in order to eliminate the native oxide. After cleaning, B2H6 (5%)/H2 plasma and negative pulse bias of -1kV to 5 kV were used to form shallow p+/n junction at the boron dose of 1$\times$1015 to 5$\times$1016 #/cm2. The as-implanted samples were annealed at 90$0^{\circ}C$, 95$0^{\circ}C$ and 100$0^{\circ}C$during various annealing time with rapid thermal process. After annealing, the sheet resistance and the junction depth were measured with four point probe and secondary ion mass spectroscopy, respectively. The doping uniformity was also investigated. In addition, the electrical characteristics were measured for Schottky diode with a current-voltage meter.

  • PDF

MICROMAGNETISM OF HARD AND SOFT MAGNETIC MATERIALS

  • Kronmuller, Helmut
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.366-371
    • /
    • 1995
  • High performance magnetic materials are characterized by the combination of outstanding magnetic properties and optimized microstructures, e.g., nanocrystalline composites of multilayers and small particle systems. The characteristic parameters of the hysteresis loops of these materials vary over more than a factor of $10^{6}$ with optimum values for the coercive field of several Tesla and permeabilities of $10^{6}$. Within the framework of the computational micromagnetism (nanomagnetism) using the finite element method the upper and lower bounds of the coercive field of different types of grain ensembles and multilayers have been determined. For the case of nanocrystalline composites the role of grain size, exchange and dipolar coupling between grains and the degree of grain alignment will be discusses in detail. It is shown that the largest coercivities are obtained for exchange decoupled grains, whereas remanence enhancing requires exchange coupled grains below 20 nm. For composite permanent magnets based on $Nd_{2}Fe_{14}B$ with an amount of ~ 50% soft $\alpha$-Fe-phase coercivities of ${\mu}_{0}H_{c}=0.75\;T$, a remanence of 1.5 T and an energy product of $400\;kJ/m^{3}$ is expected. In nanocrystalline systems the temperature dependence of the coercivity is well described by the relation ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}{\mu}_{0}M_{s}$, where the microstructural parameters $\alpha$ and $N_{eff}$ take care of the short-range perturbations of the anisotropy and $N_{eff}$ is related to the long-range dipolar interactions. $N_{eff}$ is found to follow a logarithmic grain size size dependence ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}(\beta1nD){\mu}_{0}M_{s}$. Several trends how to achieve the ideal situation $\alpha$->1 and $N_{eff}$->1->0 will be discussed.

  • PDF

A study on the Separation/recovery of Rare Earth Elements from Wast Permanent Magnet by a Fractional Crystallization Method and Sulfuric Acid Leaching (폐영구자석 황산침출과 분별결정법에 의한 희토류 분리·회수에 대한 연구)

  • Kim, Dae-Weon;Kim, Hee-Seon;Kim, Boram;Jin, Yun-Ho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.103-109
    • /
    • 2022
  • Nd-Fe-B waste permanent magnet contains about 20~30% rare earth elements and about 60~70% iron elements, and the rare earth and iron components were recovered through sulfuric acid leaching and fractional crystallization. Oxidation roasting was not performed for separation and recover of the rare earth and iron elements. The leaching characteristics were confirmed by using as variables the sulfuric acid concentration and the mineral solution concentration ratio. Sulfuric acid leaching was carried out for 3 hours for each sulfuric acid concentration. The leached solid phase was characterized for its crystalline phase, composition, and quantitative components by XRD and XRF analysis, and the filtrate was analyzed for components by ICP analysis. With sulfuric acid leaching at 3M sulfuric acid concentration, neodymium compounds were formed, the iron content was the least, and the recovery rate was high. After the filtrate remaining after sulfuric acid leaching was subjected to fractional crystallization through evaporation and concentration, the neodymium component was found to be concentrated 7.0 times and the iron component 2.8 times. In this study, the recovery rate of waste permanent magnets through sulfuric acid leaching and a fractional crystallization method without an oxidation and roasting process was confirmed to be about 99.4%.

A Inclined Slot-excited Circular Plasma Source with a Cusp Magnetic Field

  • You, H.J.;Kim, D.W.;Koo, M.;Jang, S.W.;Jung, Y.H.;Lee, B.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.435-435
    • /
    • 2010
  • A inclined slot-excited plasma source is newly designed and constructed for higher flux HNB(Hyperthermal Neutral Beam) generation. The present source is different from the vertical SLAN(SLot ANtenna) sources [1] in two aspects. One is that the slots are inclined, and the other is that the magnetic field is configured to a cusp type. These modifications are intended to make the source plasma operated in sub-milli-torr pressure regime and as thin as possible, both of which is to get higher HNB flux by decreasing the re-ionization rate of the reflected atoms from the neutralizer [2]. The plasma is generated in a quartz tube of internal diameter 170 mm enclosed in a aluminum application chamber of larger diameter 250 mm. The microwave power is fed to the plasma chamber by 8 inclined slots cut into the application chamber wall. The slots are coupled the chamber to a WR280 waveguide wound around it to form a ring resonator. In order to make two slots $\lambda_g/2$ apart in phase, the adjacent slots are rotated in opposite directions. The rotation angle of the slots are set to $60^{\circ}$ from the chamber axis. Between the quartz chamber and the aluminum cylindrical chamber 8 NdFeB magnets are equally spaced and fixed to form the cusp magnetic field confinement and ECR (Electron Cyclotron Resonance) field. In this presentation, the magnetic and electromagnetic simulations, and the measured plasma parameters are given for both the inclined and the vertical slot-excited plasma sources. We also discuss how the sources can be tailored to suit better-performing HNB sources.

  • PDF

Magnetic Orientations of Bull Sperm Treated by DTT or Heparin

  • Suga, D.;Shinjo, A.;Kumianto, E.;Nakada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2000
  • This paper describes the magnetic orientation of the intact and demembranated bull sperm treated by DTT or heparin in a 5,400 G static field. Semen samples collected from four bulls (Japanese Black) were mixed to the same sperm density. One percentage triton X-100 was used to extract the plasma membrane. The intact and demembranated sperm suspensions were treated with 20, 200, 2,000 mM DTT, 100, 1,000 or 10,000 units heparin solutions at $4{^{\circ}C}$ for 6 days. The decondensation of the sperm nuclei treated by DTT or heparin was examined by measuring the sperm head area at 1, 3, and 6 days. After measuring the area, each sperm sample was exposed to a 5,400 G static magnetic field generated by Nd-Fe-B permanent magnets for 24 hours at room temperature. Results showed that the decondensation of bull sperm nuclei was not induced by the heparin treatment, however, incomplete decondensation was induced by the DTT treatment. During the magnetic orientation, bull sperms treated by DTT or heparin had low percentages of long axis perpendicular to the magnetic lines of force. However, different aspects were obtained for long axis perpendicular orientations following treatment of DTT or heparin. Through the DTT treatment, the decline of long axis perpendicularly oriented percentages was due to the increase of long axis parallel orientation with the head of the flat plane perpendicular to the magnetic lines of force, whereas, using the heparin treatment, the decline of long axis perpendicular orientation was due to the increment of long axis parallel orientation with the head of the flat plane parallel to the magnetic lines of force. Also, percentages of the head of the flat plane perpendicular were decreased by the heparin treatment. These findings suggest that maintaining the structure of protamine in the chromatin is necessary for the sperm head to orient with its flat plane perpendicular, and maintaining the disulfide bond in the chromatin is necessary for the long axis of sperm to orient perpendicularly.

Magnetic Orientations of Bull Sperm Separated into Head and Flagellum Treated by DTT or Heparin

  • Suga, D.;Shinjo, A.;Kurnianto, E.;Nakada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-175
    • /
    • 2000
  • This paper describes the magnetic orientation of bull sperm separated into the head and the flagellum treated by DTT or heparin in a 5,400G static field. Semen samples collected from four bulls (Japanese Black) were mixed to the same sperm density. One percentage triton X-100 was used to extract the plasma membrane. The intact and demembranated sperm suspensions were treated with 20, 200, 2,000 mM DTT, 100, 1,000 or 10,000 units heparin solutions at $4^{\circ}C$ for 6 days. The decondensation of the sperm nuclei treated by DTT or heparin was examined by measuring the head area at 1, 3 and 6 days. After measuring the area, each sample was exposed to a 5,400G static magnetic field generated by Nd-Fe-B permanent magnets for 24 hours at room temperature. Results showed that the sperms were separated into the head and the flagellum through the DTT treatment. Almost of the separated heads showed that their long axis oriented perpendicularly to the magnetic lines of force, and most of the long axis perpendicularly oriented heads showed that their flat plane oriented perpendicularly in a 5,400G magnetic field. Also, the demembranation of the head tended to increase those perpendicular orientations, while those perpendicular orientations of the head declined with the decondensation of the sperm nuclei. These findings suggest that strong magnetic anisotropy for the perpendicular orientation of the long axis and the flat plane of the head occurs in the sperm nuclei in a 5,400G magnetic field. The separated flagellum showed lower parallel orientation, and the separated and demembranated flagellum showed parallel orientation to the magnetic lines of force in this magnetic field. These findings suggest that weak magnetic anisotropy of the parallel orientation of the flagellum occurs in the inside components in a 5,400G field.