• Title/Summary/Keyword: Nd-Fe-B magnets

Search Result 199, Processing Time 0.029 seconds

Rare Earth Dispute and Trend in Development of NdFeB Anisotropic Bonded Magnets (희토류 자원분쟁과 NdFeB계 이방성 본드자석 개발동향)

  • Kim, H.J.;Kim, S.M.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.109-115
    • /
    • 2012
  • NeFeB anisotropy bonded magnet has proposed a new paradigm of weight reduction of small motors by replacing the conventional ferrite permanent magnets with its high magnetic property of 25 MGOe during last five years. It has also advanced by leaps and bounds in the field of motor industry for automobiles and electric power tools. And it has led a new innovation of fifty percent weight lightening compared to its current motors by correctly focusing on fuel performance improvement through weight lightening that automobile industry chased. There was, however, another price skyrocketing in 2011 after China had announced its export regulation in rare earth materials in July, 2010. And this price change has an extensive impact on the industries that consume rare earth magnets. This environmental change has caused technical challenge to improve the performance by using least amount of rare earth elements in NdFeB anisotropy bonded magnets, and led to make a new technical approach to a new applied field. In this article, we will show how each nation deals with this industrial issue, and introduce development trend and application of anisotropic NdFeB bonded magnets, so-called MAGFINE made by Aichi Steel Corp.

Magnetic Properties of (Nd, Dy)-Fe-B Sintered Magnets Mixed with Dy Compounds (Dy 화합물 혼합에 의한 (Nd, Dy)-Fe-B 소결자석의 자기특성 변화)

  • NamKung, S.;Lee, M.W.;Cho, I.S.;Park, Y.D.;Lim, T.H.;Lee, S.R.;Jang, T.S.
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • In order to increase the coercivity of (Nd, Dy)-Fe-B sintered magnets without much reduction of remanence, small amount of Dy compounds such as $Dy_2O_3$ and $DyF_3$ was mixed with (Nd, Dy)-Fe-B powder. After mixing, the coercivity of (Nd, Dy)-Fe-B sintered magnets apparently increased with the increase of Dy compound in the mixture. Addition of $DyF_3$ was more effective than $Dy_2O_3$ for the improvement of coercivity. Reduction of the remanence by the addition of Dy compound, however, was larger than expected mostly due to unresolved coarse Dy compound in the magnet. EPMA analysis revealed that Dy was diffused throughout the grains in the magnet mixed with $DyF_3$ whereas Dy was rather concentrated around grain boundaries in the magnet mixed with $Dy_2O_3$.

Thermal Behaviors of Nd2Fe14B/Fe3B Based Nanocomposite Magnets

  • Yang, Choong-Jin;Park, Eon-Byung;Choi, Seung-Duck
    • Journal of Magnetics
    • /
    • v.3 no.1
    • /
    • pp.4-8
    • /
    • 1998
  • Two different compositions of melt spun magnetic alloys, $ Nd_4Fe_{80}B_{16} and Nd_4Fe_{76}Co}\_3Hf_{0.5}Ga_{0.5}B_{16},$ were characterized in terms of magnetic properties and thermal behaviors. It was found that the addition of Hf and Ga effectively slow down the crystallization rate of the nanocomposite $ Nd_2Fe_{14}B/Fe_3B$ magnet. Coercivity(iHc) changes only slightly with varying the post annealing conditions confirming that iHc is not a sensitive magnetic quantity as a function of grain size and exchange coupled interaction. The experimentally observed behaviors of Mr and Hc do not vary monotonously with in-creasing grain size which is not in agreement with the numerically calculated result near the critical grain size (dc). The plot of the grain size dependence for the remanence and coercivity in isotrop!c nanocomposite magnets has been revised in this study. The maxium energy product, $(B, H)_{max}$ =15.34 MGOe, and a reduced remanence, Mr/Ms=0.84 were obtained, respectively.

  • PDF

Preform Design for the Sinter-forging Process of Arc-shaped Powdered Magnets (원호 형상을 가지는 분말자석 단조성형공정에서의 예비성형체 설계)

  • Kim, Seung-Ho;Lee, Choong-Ho;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 1999
  • Tube Process(TP) is one of the processes to produce permanent magnets. Advantage claimed for this process is that it can accmplish both densification and anisotropication in one step forming. This process is distinguished from other processes since it uses deformable tube for densification of powder magnets. TP has, however, difficulties in manufacturing permanent magnets from Nd-Fe-B green powder due to folding resulted from large height reduction and localized densification. Therefore, an adequate preform is necessary to reduce folding resulted from large height reduction and localized densification. Therefore, an adequate preform is necessary to reduce folding, lead magnets into almost desired final shape and get uniform densification. In this paper, preform design for TP is carried out without a deformable tube to investigate the behaviour of magnet sinter-forging. Preform design is accomplished to increase the effective magnet area with a near net shape and uniform densification.

  • PDF