• 제목/요약/키워드: Nd-Fe-B magnetic powder

검색결과 78건 처리시간 0.031초

반복 열처리한 Nd-Fe-B 소결 자석의 미세구조 제어 및 자성특성 평가 (Microstructure Control and Magnetic Property of Nd-Fe-B Sintered Magnets After Cyclic Heat Treatment)

  • 김세훈;김훈섭;김동환;김영도
    • 한국분말재료학회지
    • /
    • 제15권6호
    • /
    • pp.471-476
    • /
    • 2008
  • Sintered Nd-Fe-B magnets have been widely used due to their excellent magnetic properties, especially for driving motors of hybrid and electric vehicles. The microstructure of Nd-Fe-B magnets strongly affects their magnetic properties, in particular the coercivity. Therefore, a post-sintering process like heat-treatment is required for improving the magnetic properties of Nd-Fe-B sintered magnets. In this study, cyclic heat treatment was performed at temperatures between $350^{\circ}C$ and $450^{\circ}C$ up to 16 cycles in order to control microstructures such as size and shape of the Nd-rich phase without grain growth of the $Nd_{2}Fe_{14}B$ phase. The 2 cycles specimen at this temperature range showed more homogeneous microstructure which leads to higher coercivity of 35 kOe than as-sintered one.

(Nd, Dy)-Fe-B 소결자석의 성형조건에 따른 자기특성 변화 (Variation of Magnetic Properties of (Nd, Dy)-Fe-B Sintered Magnets with Compaction Conditions)

  • 남궁석;이민우;한세준;장태석
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.1-5
    • /
    • 2012
  • In order to improve the remanence of (Nd, Dy)-Fe-B sintered magnets, we investigated the influence of compaction conditions such as packing density, applied field and green density on the magnetic properties. While the remanence decreased with increasing the packing density and green density, it increased with the increase of the applied field. In addition, XRD analysis revealed that the remanence was enhanced as the degree of powder alignment was improved. The green density was more influential on the remanence than the packing density and applied field.

Nd-Fe-B계 소결자석의 자기적특성 향상 연구 (Improvement of Magnetic Properties of Nd-Fe-B Type Sintered Magnet)

  • 김윤배;정우상;정원용
    • 한국자기학회지
    • /
    • 제12권2호
    • /
    • pp.57-63
    • /
    • 2002
  • Nd-Fe-B계 소결자석의 특성을 향상시키기 위해서는 Nd-Fe-B계 합금의 조성 및 제조공정을 조절하여 자성분말의 입도 및 입도분포, 강자성상인 N $d_2$F $e_{14}$B상의 분율, 자성분말의 배향도, 산소 함량, grain size 등과 같은 factor들을 최적화 하여야 한다. 본 연구에서는 실험실 규모로 Nd-Fe-B계 합금 조성 및 공정 조절을 통하여 Nd-Fe-B계 소결자석을 제조하는 연구를 수행하였으며, 분쇄매체 분쇄시간 및 ball size에 따른 Nd-Fe-B계 소결자석의 자기적특성을 분석하여 최적의 분쇄조건을 조사하였다. 또한 분쇄공정 중 FeGa합금을 첨가하여 잔류자속밀도의 감소없이 Nd-Fe-B계 소결자석의 보자력을 향상시킬 수 있었다. 이와 같은 분쇄 조건의 연구, FeGa 합금에 의한 보자력 향상, 건식분쇄 방법 및 powder blending 공정을 적용하여 잔류자속밀도( $B_{r}$,) : 14.4kG, 보자력($_{i}$ $H_{c}$) : 9.4kOe, 최대자기에너지적((BH)$_{\max}$) : 47 MGOe의 자기적 특성을 갖는 Nd-Fe-B계 소결자석을 제조하였다.

가스분무로 제조된 NdFeB 합금분말의 강소성변형을 통한 결정립 미세화 및 이방성 제어 (Control of Grain Refinement and Anisotropy of NdFeB Alloy Powder by Severe Plastic Deformation Fabricated by the Gas Atomization Process)

  • 조주영;박상민;자비드 후세인;송명석;김택수
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.124-128
    • /
    • 2022
  • NdFeB magnets have been positioned as the core materials in advanced technologies such as MRI (magnetic resonance imaging), FA (factory automation system), robot, motors, and so on based on the highest magnetic properties. To effectively improve the refined microstructure, the plastic deformation has been known as the good alternatives by the recrystallization. However, it has been regarded as being impossible because of the few slip systems in the RE-Fe-B magnets at room temperature. The purpose of this study was to investigate the possibility of control of grain refinement and magnetic anisotropy of NdFeB alloy powder by the severe plastic deformation. The NdFeB magnet powder was fabricated by gas atomization process, and the powder was pre-compacted at high temperature. The pre-compacted billets were deformed by HPT (high pressure torsion), and then the deformed billets were observed microstructure and magnetic properties. After the HPT process at room temperature, the grain size decreased with increasing because of the melted Nd-rich phase, and the anisotropy of Nd2Fe14B phase was formed after the HPT process.

Study of the Enhancement of Magnetic Properties of NdFeB Materials Fabricated by Modified HDDR Process

  • Fu, Meng;Lian, Fa-zeng;Wang, jie-Ji;Pei, Wen-Ii;Chen, Yu-lan;Yang, Hong-cai
    • Journal of Magnetics
    • /
    • 제9권4호
    • /
    • pp.109-112
    • /
    • 2004
  • The HDDR (Hydrogenation-Disproportionation-Desorption-Recombination) process is a special method to produce anisotropic NdFeB powders for bonded magnet. The effect of the modified HDDR process on magnetic properties of $Nd_2Fe_{14}B$-based magnet with several composition $Nd_{11.2}Fe_{66.5-x}Co_{15.4}B_{6,8}Zr{0.1}Ga_x(x=0{\sim}1.0)$ and that of microelement Ga, disproportional temperature and annealing temperature on $_jH_c$, grain size were investigated in order to produce anisotropic powder with high magnetic properties. It was found that modified HDDR process is very effective to enhance magnetic properties and to fine grain size. The addition of Ga could change disproportionation character remarkably of the alloy and could improve magnetic properties of magnet powder. Increasing annealing temperature induces significant grain growth. And grain size produced by modified HDDR process is significantly smaller than those produced by conventional HDDR process.

The Influence of Dehydrogenation Speed on the Microstructure and Magnetic Properties of Nd-Fe-B Magnets Prepared by HDDR Process

  • Cha, Hee-Ryoung;Yu, Ji-Hun;Baek, Youn-Kyoung;Kwon, Hae-Woong;Kim, Yang-Do;Lee, Jung-Goo
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.49-54
    • /
    • 2014
  • The influence regarding the dehydrogenation speed, at the desorption-recombination state during the hydrogenation-disproportionation-desorption-recombination (HDDR) process, on the microstructure and magnetic properties of Nd-Fe-B magnetic powders has been studied. Strip cast Nd-Fe-B-based alloys were subjected to the HDDR process after the homogenization heat treatment. During the desorption-recombination stage, both the pumping speed and time of hydrogen were systematically changed in order to control the speed of the desorption-recombination reaction. The magnetic properties of HDDR powders were improved as the pumping speed of hydrogen at the desorption-recombination stage was decreased. The lower pumping speed resulted in a smaller grain size and higher DoA. The coercivity and the remanence of the 200-300 ${\mu}m$ sized HDDR powder increased from 12.7 to 14.6 kOe and from 8.9 to 10.0 kG, respectively. In addition, the remanence was further increased to 11.8 kG by milling the powders down to about 25-90 ${\mu}m$, resulting in $(BH)_{max}$ of 28.8 MGOe.

방전 플라즈마 소결을 이용한 (Nd,Dy)-Fe-B 영구자석의 자성 특성 및 소결 거동 (Magnetic Properties and Sintering Behavior of (Nd,Dy)-Fe-B Permanent Magnet by Spark Plasma Sintering)

  • 송선용;김진우;김세훈;김영도
    • 한국분말재료학회지
    • /
    • 제19권2호
    • /
    • pp.105-109
    • /
    • 2012
  • Magnetic properties and the microstructures of magnets prepared by spark plasma sintering were investigated in order to enhance magnetic properties by grain size control. Nd-Fe-B magnets were fabricated by the spark plasma sintering under 30 MPa at various temperatures. The grain size was effectively controlled by the spark plasma sintering and it was possible to make Nd-Fe-B magnets with grain size of 5.9 ${\mu}m$.

미세구조 제어를 통한 (Nd,Dy)-Fe-B 소결자석의 보자력 증가 (The Coercivity Enhancement of (Nd,Dy)-Fe-B Sintered Magnet by Microstructure Control)

  • 김진우;김세훈;김영도
    • 한국분말재료학회지
    • /
    • 제18권1호
    • /
    • pp.18-23
    • /
    • 2011
  • Sintered Nd-Fe-B magnets are widely used in many fields such as motors, generators, actuators, microwaves and so on due to their excellent magnetic properties. Many researchers have shown that the Nd-rich phase was essentially important for high magnet properties. In this study, we focused on controlling of the Nd-rich phase to enhance magnetic properties by the cyclic sintering process. Nd-Fe-B based sintered magnets were prepared by isothermal sintering and cyclic sintering processes. Magnetic properties and microstructure of the magnets were investigated. The coercivity was enhanced from 21.2 kOe to 23.27 kOe after 10 cycles of the sintering. The Nd-rich phase was effectively penetrated into the grain boundary between the $Nd_2Fe_{14}B$ grains by the cyclic sintering.