• Title/Summary/Keyword: Nd-Fe-B magnetic powder

Search Result 78, Processing Time 0.027 seconds

Preparation of Highly Efficient Nd-Fe-B Magnetic Powders by Reduction/Diffusion Process (환원/확산 공정에 의한 고성능 Nd-Fe-B 자성분말의 제조)

  • Kim, Dongsoo;Chen, Chunqiang;Baek, Younkyoung;Choi, Chuljin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.197-202
    • /
    • 2013
  • A novel route to prepare Nd-Fe-B magnetic particles by utilizing both spray drying and reduction/diffusion processes was investigated in this study. Precursors were prepared by spray drying method using the aqueous solutions containing Nd salt, Fe salt and boric acid with stoichiometric ratios. Precursor particles could be obtained with various sizes from 2 to $10{\mu}m$ by controlling concentrations of the solutions and the average size of $2{\mu}m$ of precursors were selected for further steps. After heat treatment of precursors in air, Nd and Fe oxides were formed through desalting procedure, followed by reduction processes in Hydrogen ($H_2$) atmosphere and with Calcium (Ca) granules in Argon (Ar) successively. Moreover, diffusion between Nd and Fe occurred during Ca reduction and $Nd_2Fe_{14}B$ particles were formed. With Ca amount added to particles after $H_2$ reduction, intrinsic coercivity was changed from 1 to 10 kOe. In order to remove and leach CaO and residual Ca, de-ionized water and dilute acid were used. Acidic solutions were more effective to eliminate impurities, but Fe and Nd were dissolved out from the particles. Finally, $Nd_2Fe_{14}B$ magnetic particles were synthesized after washing in de-ionized water with a mean size of $2{\mu}m$ and their maximum energy product showed 9.23 MGOe.

Size Control of Nd-Fe-B Precursor Particles Prepared by Spray Drying and Its Effect on the Magnetic Properties of Nd-Fe-B Alloy Powders after Reduction-Diffusion (분무건조된 Nd-Fe-B 전구체 입자의 크기조절 및 환원-확산 후 자기 특성에 미치는 영향)

  • Baek, Youn-Kyoung;Seo, Young-Taek;Lee, Jung-Goo;Kim, Dong Su;Bae, Dong Sik;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.359-365
    • /
    • 2013
  • In this study, we fabricated $Nd_2Fe_{14}B$ hard magnetic powders with various sizes via spray drying combined with reduction-diffusion process. Spray drying is widely used to produce nearly spherical particles that are relatively homogeneous. Thus, the precursor particles were prepared by spray drying using the aqueous solution containing Nd salts, Fe salts and boric acid with the target stoichiometric composition of $Nd_2Fe_{14}B$. The mean particle sizes of the spray-dried powders are in the range from one to seven micrometer, which are adjusted by controlling the concentrations of precursor solutions. After debinding the as-prepared precursor particles, ball milling was also conducted to control the particle sizes of Nd-Fe-B oxide powders. The resulting particles with different sizes were subjected to subsequent treatments including hydrogen reduction, Ca reduction and washing for CaO removal. The size effect of Nd-Fe-B oxide particles on the formation of $Nd_2Fe_{14}B$ phase and magnetic properties was investigated.

Synthesize of Nd2Fe14B Powders from 1-D Nd2Fe14B Wires using Electrospinning Process (전기방사 공정을 이용하여 1차원 Nd2Fe14B섬유로부터의 Nd2Fe14B 자석분말 합성)

  • Eom, Nu Si A;Noh, Su;Haq, Muhammad Aneeq;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.477-480
    • /
    • 2019
  • Magnetic 0-D Nd2Fe14B powders are successfully fabricated using 1-D Nd2Fe14B nanowire formed by an efficient and facile electrospinning process approach. The synthesized Nd-Fe-B fibers and powders are investigated for their microstructural, crystallographic, and magnetic properties according to a series of subsequent heat treatments. Each heat-treatment process leads to the removal of organic impurities and the formation of the respective oxides/composites of Nd, Fe, and B, resulting in the formation of Nd2Fe14B powders. Nd-Fe-B fibers exhibit the following magnetic properties: The coercivity (Hci) of 3260 Oe, a maximum magnetization at 3T of 109.44 emu/g, and a magnetization remanence (Mr) of 44.11 emu/g. This process easily mass produces hard magnetic Nd2Fe14B powders using a 1-D synthesis process and can be extended to the experimental design of other magnetic materials.

Sintering of Nd-Fe-B Magnets from Dy Coated Powder

  • Kim, Jin Woo;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.169-173
    • /
    • 2013
  • High-coercive (Nd,Dy)-Fe-B magnets were fabricated via dysprosium coating on Nd-Fe-B powder. The sputtering coating process of Nd-Fe-B powder yielded samples with densities greater than 98%. $(Nd,Dy)_2Fe_{14}B$ phases may have effectively penetrated into the boundaries between neighboring $Nd_2Fe_{14}B$ grains during the sputtering coating process, thereby forming a $(Nd,Dy)_2Fe_{14}B$ phase at the grain boundary. The maximum thickness of the Dy shell was approximately 70 nm. The maximum coercivity of the Dy sputter coated samples(sintered samples) increased from 1162.42 to 2020.70 kA/m. The microstructures of the $(Nd,Dy)_2Fe_{14}B$ phases were effectively controlled, resulting in improved magnetic properties. The increase in coercivity of the Nd-Fe-B sintered magnet is discussed from a microstructural point of view.

Effect of Homogenization Treatment on Magnetic Properties of HDDR Treated Nd-Fe-Ga-Nb-B Alloy (모합금의 균질화처리가 HDDR 처리된 Nd-Fe-Ga-Nb-B 합금의 자기적 특성에 미치는 영향)

  • Yu, J.H.;Lee, S.H.;Kim, D.H.;Lee, D.W.;Kim, B.K.;Choi, M.H.;Kim, Y.D.
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.285-290
    • /
    • 2009
  • HDDR treated anisotropic Nd-Fe-B powders have been widely used, due to their excellent magnetic properties, especially for sheet motors and sunroof motors of hybrid and electric vehicles. Final microstructure and coercivity of such Nd-Fe-B powders depend on the state of starting mother alloys, so additional homogenization treatment is required for improving magnetic properties of them. In this study, a homogenization treatment was performed at $900\sim1140^{\circ}C$ in order to control the grain size and Nd-rich phase distribution, and at the same time to improve coercivity of the HDDR treated magnetic powders. FE-SEM was used for observing grain size of the HDDR treated powder and EPMA was employed to observe distribution of Nd-rich phase. Magnetic properties were analyzed with a vibrating sample magnetometer.

Synthesis Of Nd2Fe14B Powders by Spray-Drying and Reduction-Diffusion Process (분무건조와 환원-확산 공정에 의한 Nd2Fe14B 분말의 합성)

  • 최철진;허민선;박병연;김성덕;하국현;김병기;박용호
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.436-442
    • /
    • 2003
  • The magnetic Nd-Fe-B powders were prepared by a thermochemical method, consisting of the processes of spray-drying, debinding, milling, H$_2$-reduction, Ca-reduction, and washing. The optimum process conditions were studied by microstructural and thermal analysis. The resultant Nd-Fe-B powder was spherical with the size of 1 ${\mu}{\textrm}{m}$. Effects of the process parameters of each step on the microstructure of the powders were investigated, and their magnetic properties were evaluated.

Microstructure and Magnetic Properties of Nd-Fe-B Sintered Magnet with the Variation of Particle Size (분말입도에 따른 Nd-Fe-B 소결자석의 미세조직 변화 및 자기적 특성)

  • Shin, Dongwon;Kim, Dong-Hwan;Park, Young-Cheol;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.447-452
    • /
    • 2016
  • Neodymium-iron-boron (Nd-Fe-B) sintered magnets have excellent magnetic properties such as the remanence, coercive force, and the maximum energy product compared to other hard magnetic materials. The coercive force of Nd-Fe-B sintered magnets is improved by the addition of heavy rare earth elements such as dysprosium and terbium instead of neodymium. Then, the magnetocrystalline anisotropy of Nd-Fe-B sintered magnets increases. However, additional elements have increased the production cost of Nd-Fe-B sintered magnets. Hence, a study on the control of the microstructure of Nd-Fe-B magnets is being conducted. As the coercive force of magnets improves, the grain size of the $Nd_2Fe_{14}B$ grain is close to 300 nm because they are nucleation-type magnets. In this study, fine particles of Nd-Fe-B are prepared with various grinding energies in the pulverization process used for preparing sintered magnets, and the microstructure and magnetic properties of the magnets are investigated.

Influence of $Dy_2O_3$ and Sn on the Structure and Magnetic Properties of NdFeNB Magnets

  • Li, Liya;Yi, Jianhong;Peng, Yuan Dong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1171-1172
    • /
    • 2006
  • Addition of 2.0wt%$Dy_2O_3$ or 0.3wt%Sn proved to be very effective in improving the permanent magnetic properties of NdFeNbB magnets. $Dy_2O_3$ additions result in the increase in the Hci and temperature dependence due to formation of (NdDy)-rich phase and grain refinement of $\Phi$ phase. This improvement of the coercivity stability of the magnets from the addition of Sn is attributed to the smoothing effect of the Sn addition at the grain boundaries. The magnetic properties, the temperature dependence and Curie temperature of NdFeNbB with $Dy_2O_3$ and Sn combined addition were found to be considerably improved.

  • PDF

Microstructure and Magnetic Properties of $Nd_2Fe_{14}B/{\alpha}-Fe$ Nanocomposite Prepared by HDDR Combined with Mechanical Milling

  • Hu, Lianxi;Wang, Erde;Guo, Bin;Shi, Gang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1286-1287
    • /
    • 2006
  • [ $Nd_2Fe_{14}B/{\alpha}-Fe$ ] nanocomposite powders with a nominal composition of $Nd_{12}Fe_{82}B_6$ were prepared by HDDR combined with mechanical milling. The microstructure was studied by Mossbauer spectrometry and TEM. The magnetic properties were investigated by VSM using bonded magnet samples. The results showed that the annealing temperature had significant influence on both the recombination kinetics and the grain size of the $Nd_2Fe_{14}B$ and ${\alpha}-Fe$ phases, and the bonded magnets presented the best magnetic properties when the nanocomposite powders were prepared by annealing at $760^{\circ}C$ for 30 min.

  • PDF

Effect of Substrate Pre-heating on Microstructure and Magnetic Properties of Nd-Fe-B Permanent Magnet Manufactured by L-PBF (L-PBF 공정으로 제조된 Nd-Fe-B계 영구자석의 기판 가열에 따른 미세조직과 자기적 특성 변화)

  • Yeon Woo Kim;Haeum Park;Tae-Hoon Kim;Kyung Tae Kim;Ji-Hun Yu;Yoon Suk Choi;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.116-122
    • /
    • 2023
  • Because magnets fabricated using Nd-Fe-B exhibit excellent magnetic properties, this novel material is used in various high-tech industries. However, because of the brittleness and low formability of Nd-Fe-B magnets, the design freedom of shapes for improving the performance is limited based on conventional tooling and postprocessing. Laser-powder bed fusion (L-PBF), the most famous additive manufacturing (AM) technique, has recently emerged as a novel process for producing geometrically complex shapes of Nd-Fe-B parts owing to its high precision and good spatial resolution. However, because of the repeated thermal shock applied to the materials during L-PBF, it is difficult to fabricate a dense Nd-Fe-B magnet. In this study, a high-density (>96%) Nd-Fe-B magnet is successfully fabricated by minimizing the thermal residual stress caused by substrate heating during L-PBF.