• 제목/요약/키워드: Nb-steel

검색결과 167건 처리시간 0.021초

Mn-Ni-Cr-Mo강에 대한 Inconel 690 오버레이 용접부에서의 고온균열의 발생거동 (Hot Cracking Behavior in Inconel 690 Overlay Welds on Mn-Ni-Cr-Mo Steel for Pressure Vessels)

  • 양병일;김정태;신용범;안용식;박화순
    • Journal of Welding and Joining
    • /
    • 제20권2호
    • /
    • pp.82-89
    • /
    • 2002
  • In order to clarify hot cracking phenomena occurred in Inconel 690 welds and it's prevention, in this study, the cracking behavior and the influence of welding variables on cracking in Inconel 690 overlay welds on Mn-Ni-Cr-Mo steel(SA 508 cl.3) for pressure vessel were investigated by using mock-up test. The main results are as follows: The cracks in Inconel 690 overlay welds were mainly generated near the start and the end part of welding beads adjacent to STS 309L welded outside of Inconel 690 welds. Most of the cracks showed typical solidification crack, and also it was assumed that there was possibility of liquation cracking in HAZ. The existence of Nb constituents or concentration of Nb was recognized on the fracture facets of the solidification cracks in the welds by SMAW. Therefore Nb was considered to be the main factor of the solidification cracking. As the weld heat input was more increased and the weld bead length was longer, the extent of cracking was more increased. Moreover the extent of cracking was considerably decreased by changing of welding sequence to the start and the end part of welds. Hot cracking in welds by GTAW was considerably decreased as compared with that of SMAW. And cracks were well generated in the Inconel 690 overlay welds adjacent to 575 309L welds. This means that the hot cracking susceptibility of Inconel 690 welds was largely varied by chemical components and/or compositions of filter metals, base metals and neighboring welds.

Ti-Nb 합금강에서 합금성분의 변화에 따른 석출물거동이 고온연성에 미치는 영향 (Effect of Precipitates on Hot Ductility Behavior of Steel Containing Ti and Nb)

  • 한원배;이종호;김희수;안현환;이승재;김성우;서석종;윤종승
    • 대한금속재료학회지
    • /
    • 제50권4호
    • /
    • pp.285-292
    • /
    • 2012
  • Hot ductility behavior of precipitation-hardened low-carbon iron alloys containing 0.02 wt% Ti and 0.05 wt% Nb was characterized by a hot tensile stress test. Carbon (0.05, 0.1, 0.25 wt%) and boron (0.002 wt%) contents were varied to study the effect of precipitates on the high-temperature embrittlement of the alloys in the temperature range of $600{\sim}800^{\circ}C$. Ductility loss was observed at $700^{\circ}C$ for the tested alloys. The cause of the ductility loss was mainly attributed to the carbides and ferrite films formed at the grain boundaries during deformation. Although the carbon content tended to raise the total fraction of Nb (C, N), the precipitates were formed mostly in the grain interior as the precipitation temperature was raised above the deformation temperature by the high carbon content. Hence, carbon in excess suppressed the hot ductility loss. Meanwhile, boron addition improved the hot ductility of the alloys. The improvement is likely due to the boron atoms capturing carbon atoms and thus retarding the carbide formation.

Effects of pH and Chloride Concentration on Corrosion Behavior of Duplex Stainless Steel and Titanium Alloys Ti 6Al 2Nb 1Ta 1Mo at Elevated Temperature for Pump Impeller Applications

  • Aymen A., Ahmed;Ammar Yaseen, Burjes;Ammar Yaseen, Burjes
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.454-465
    • /
    • 2022
  • The objective of this study was to determine effects of temperatures and pH of sodium chloride solution with MgCl2 ions on corrosion resistance of duplex stainless-steel X2CrNiMoN22-5-3 (DSS) and Ti 6Al 2Nb1Ta1Mo (Ti). Effects of sodium chloride concentration on corrosion resistance were also studied. Corrosion behavior and pitting morphology of duplex stainless steel (DSS) and Ti alloys were evaluated through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). It was found that a decrease in pH significantly reduced the corrosion resistance of both alloys. Changes in chloride concentration and temperature had more substantial impact on corrosion behavior of DSS than on Ti alloys. Pitting corrosion was formed on DSS samples under all conditions, whereas crevice corrosion was developed on Ti samples with the presence of magnesium chloride at 90 ℃. In conclusion, magnesium chloride ions in an exceedingly strong acidity solution appear to interact with re-passivation process at the surface of these alloys and influence the resulting surface topography.

Nb 첨가에 따른 저탄소강의 충격 특성에 미치는 변태 온도의 영향 (Influence Nb Addition and Transformation Temperature on Impact Properties of Low-Carbon Steels)

  • 이상인;강준영;황병철
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.590-597
    • /
    • 2016
  • In this study, six kinds of low-carbon steel specimens with different ferrite-pearlite microstructures were fabricated by varying the Nb content and the transformation temperature. The microstructural factors of ferrite grain size, pearlite fraction, interlamellar spacing, and cementite thickness were quantitatively measured based on optical and scanning electron micrographs; then, Charpy impact tests were conducted in order to investigate the correlation of the microstructural factors with the impact toughness and the ductile-brittle transition temperature (DBTT). The microstructural analysis results showed that the Nb4 specimens had ferrite grain size smaller than that of the Nb0 specimens due to the pinning effect resulting from the formation of carbonitrides. The pearlite interlamellar spacing and the cementite thickness also decreased as the transformation temperature decreased. The Charpy impact test results indicated that the impact-absorbed energy increased and the ductile-brittle transition temperature decreased with addition of Nb content and decreasing transformation temperature, although all specimens showed ductile-brittle transition behaviour.

HSLA 주강의 기계적 성질에 미치는 첨가원소의 영향 (Effects of Additional Elements of the Mechanical Properties of HSLA Cast Steels)

  • 박재현;김인배
    • 한국주조공학회지
    • /
    • 제20권5호
    • /
    • pp.307-315
    • /
    • 2000
  • The effects of additional elements on the mechanical properties of HSLA cast steels such as hardness, tensile strength and charily impact energy have been investigated. Test results showed the mechanical properties of HSLA cast steels were superior to those of C-Mn cast steels. In case of the HSLA cast steels, HSLA cast steels with all addition of Nb, V, and Ti had more excellent tensile strength than those with individual addition of Nb, V, or Ti. The tensile strengths of HSLA cast steels were increased as the Mo contents were increased from 0.25% to 0.5%. These are attributed to the solution hardening and the change of the precipitation kinetics of NbC due to increased Mo contents. The tensile strength of HSLA cast steel was remarkablely increased as the manganese contents were increased from 0.65% to 1.2% and 1.5%, respectively. However, the optimum composition of HSLA cast steels to obtain the best compromise between tensile strength and charily impact energy compared to C-Mn cast steel was the additions of0.1% C and 1.2% Mn.

  • PDF

18Ni 마르에이징강의 피로특성 및 유한요소해석 (Fatigue Characteristics and FEM Analysis of 18Ni(200) Maraging Steel)

  • 장경천;국중민;최병희;정재강;최병기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.136-142
    • /
    • 2004
  • Effects of Nb(Niobium) contents and solution annealing on the strength and fatigue lift of 18%Ni maraging steel commonly using in aircraft, space field, nuclear energy, and vehicle etc. were investigated. Also the fatigue life stress intensity factor were compared experiment result and FEA(finite element analysis) result. The more Nb content, the higher or the lower fatigue lift on base metal specimens or solution annealed specimens showing that the fatigue life was almost the same. The maximum stresses of X, Y, and Z axis direction showed about 2.12${\times}$10$^2$MPa, 4.40${\times}$10$^2$MPa and 1.32${\times}$10$^2$MPa respectively. The Y direction stress showed the highest because of the same direction as the loading direction. The fatigue lives showed about 7% lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about 3.5∼10% than that of the experiment result showing that the longer fatigue crack length, the higher error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

  • PDF

자동차 배기계 플랜지용 16~19 wt.% 페라이트 주조용 스테인리스강 개발 (Development of a (16~19)Cr Ferritic Cast Stainless Steel for a Flange Material of Automotive Exhaust Parts)

  • 장희진;범원진;박찬진
    • 한국표면공학회지
    • /
    • 제42권2호
    • /
    • pp.79-85
    • /
    • 2009
  • We aimed to develop a Fe-($16{\sim}19$)Cr-($0.1{\sim}0.6$)Ti-($0.1{\sim}0.6$)Nb stainless steel for automotive exhaust parts with high corrosion resistance. The alloys with high Cr content showed high resistance to general corrosion and also localized corrosion. The increase of Ti and Nb contents resulted in a linear increase in the general corrosion resistance, while the pitting potential was improved by addition of these elements up to about 0.4 wt.%. The low-carbon Fe-17Cr-0.4Ti-0.4Nb alloy annealed at $850^{\circ}C$ and air-cooled was considered to be the optimum alloy for our purpose with the critical anodic current density of $247{\mu}A/cm^2$ in 0.05 M $H_2SO_4$ solution and the pitting potential of 310 mVSCE in 0.2 M NaCl solution.

Ti-Nb첨가 저합금강 용접열영향부에서의 열-응력 이력이 미세조직 및 기계적 성질에 미치는 영향에 관한 연구 (Microstructure Evolution and Its Effect on Strength during Thermo-mechanical Cycling in the Weld Coarse-grained Heat-affected Zone of Ti-Nb Added HSLA Steel)

  • 문준오;이창희
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.44-49
    • /
    • 2013
  • The influence of thermo-mechanical cycling on the microstructure and strength in the weld coarse-grained heat affected zone (CGHAZ) of Ti-Nb added low carbon HSLA steel was explored through Vickers hardness tests, nanoindentation experiments, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Undeformed and deformed CGHAZs were simulated using Gleeble simulator with different heat inputs of 30kJ/cm and 300kJ/cm. At high heat input of 300kJ/cm, the CGHAZ consisted of ferrite and pearlite and then their grain sizes were not affected by deformation. At low heat input of 30kJ/cm, the CGHAZ consisted of lath martensite and then the sizes of prior austenite grain, packet and lath width decreased with deformation. In addition, the fraction of particle increased with deformation and this is because the precipitation kinetics was accelerated by deformation. Meanwhile, the Vickers and nanoindentation hardness of deformed CGHAZ with 30kJ/cm heat input were higher than those of undeformed CGHAZ, which are due to the effect of grain refinement and precipitation strengthening.

Evaluation of radiation resistance of an austenitic stainless steel with nanosized carbide precipitates using heavy ion irradiation at 200 dpa

  • Ji Ho Shin ;Byeong Seo Kong;Chaewon Jeong;Hyun Joon Eom;Changheui Jang;Lin Shao
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.555-565
    • /
    • 2023
  • Despite many advantages as structural materials, austenitic stainless steels (SSs) have been avoided in many next generation nuclear systems due to poor void swelling resistance. In this paper, we report the results of heavy ion irradiation to the recently developed advanced radiation resistant austenitic SS (ARES-6P) with nanosized NbC precipitates. Heavy ion irradiation was performed at high temperatures (500 ℃ and 575 ℃) to the damage level of ~200 displacement per atom (dpa). The measured void swelling of ARES-6P was 2-3%, which was considerably less compared to commercial 316 SS and comparable to ferritic martensitic steels. In addition, increment of hardness measured by nano-indentation was much smaller for ARES-6P compared to 316 SS. Though some nanosized NbC precipitates were dissociated under relatively high dose rate (~5.0 × 10-4 dpa/s), sufficient number of NbC precipitates remained to act as sink sites for the point defects, resulting in such superior radiation resistance.

분말고속도공구강의 미끄럼마모특성에 미치는 열처리조건의 영향 (The Effect of Heat treating Conditions on Wear Characteristics of High Speed Steel by Powder Metallurgy)

  • 이한영;노정균;배종수;김용진
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.48-53
    • /
    • 2000
  • The effects of added elements, such as Co or Nb, on wear properties of high speed steel by powder metallurgy(PM-HSS) had been evaluated in previous paper. The wear properties of materials, in fact, have been a]so influenced by heat-treating conditions. In this paper, the effects of heat-treating conditions on wear properties of PM-HSS have been evaluated. The wear tests have been performed as same conditions as previous paper using PM-HSS(5%Co-1%Nb) heat-treated under different quenching and tempering temperature. The result of this paper shows that wear resistance of PM-HSS is improved with relatively high quenching temperature. However tempering temperature is not sensitve to the wear resistance in range of high quenching temperature. It may be deduced by the fact that the shear strength of matrix by strengthening mechanisms of quenching aging in addition to dispersion-hardening is improved.

  • PDF