DOI QR코드

DOI QR Code

Effect of Precipitates on Hot Ductility Behavior of Steel Containing Ti and Nb

Ti-Nb 합금강에서 합금성분의 변화에 따른 석출물거동이 고온연성에 미치는 영향

  • Han, Won Bae (Division of Materials Science & Engineering, Hanyang University) ;
  • Lee, Jong Ho (Division of Materials Science & Engineering, Hanyang University) ;
  • Kim, Hee-Soo (Division of Materials Science & Engineering, Hanyang University) ;
  • An, Hyeun Hwan (Division of Materials Science & Engineering, Hanyang University) ;
  • Lee, Seung Jae (Division of Materials Science & Engineering, Hanyang University) ;
  • Kim, Seong Woo (Sheet Product & Process Research Group, POSCO Technical Research Laboratories) ;
  • Seo, Seok Jong (Sheet Product & Process Research Group, POSCO Technical Research Laboratories) ;
  • Yoon, Chong Seung (Division of Materials Science & Engineering, Hanyang University)
  • 한원배 (한양대학교 신소재공학과) ;
  • 이종호 (한양대학교 신소재공학과) ;
  • 김희수 (한양대학교 신소재공학과) ;
  • 안현환 (한양대학교 신소재공학과) ;
  • 이승재 (한양대학교 신소재공학과) ;
  • 김성우 (POSCO 기술연구원 박판연구그룹) ;
  • 서석종 (POSCO 기술연구원 박판연구그룹) ;
  • 윤종승 (한양대학교 신소재공학과)
  • Received : 2011.10.20
  • Published : 2012.05.25

Abstract

Hot ductility behavior of precipitation-hardened low-carbon iron alloys containing 0.02 wt% Ti and 0.05 wt% Nb was characterized by a hot tensile stress test. Carbon (0.05, 0.1, 0.25 wt%) and boron (0.002 wt%) contents were varied to study the effect of precipitates on the high-temperature embrittlement of the alloys in the temperature range of $600{\sim}800^{\circ}C$. Ductility loss was observed at $700^{\circ}C$ for the tested alloys. The cause of the ductility loss was mainly attributed to the carbides and ferrite films formed at the grain boundaries during deformation. Although the carbon content tended to raise the total fraction of Nb (C, N), the precipitates were formed mostly in the grain interior as the precipitation temperature was raised above the deformation temperature by the high carbon content. Hence, carbon in excess suppressed the hot ductility loss. Meanwhile, boron addition improved the hot ductility of the alloys. The improvement is likely due to the boron atoms capturing carbon atoms and thus retarding the carbide formation.

Keywords

References

  1. B. Mintz, A. Cowley, C. Talian, D. N. Crowther, and R. Abushosha, Mater. Sci. Tech. 19, 184 (2003). https://doi.org/10.1179/026708303225009409
  2. H. G. Suzuki, S. Nishimura, and Y. Nakamura, Transactions ISIJ. 24, 54 (1984). https://doi.org/10.2355/isijinternational1966.24.54
  3. B. Mintz, R. Abushosha, and A. Cowley, Mater. Sci. Tech. 14, 222 (1998). https://doi.org/10.1179/026708398790301584
  4. H. G. Suzuki, S. Nishimura, and S.Yamacuchi, Transaction ISIJ. 22, 48 (1982) https://doi.org/10.2355/isijinternational1966.22.48
  5. R. Abushosha, S. Avvad, and B. Mintz, Mater. Sci. Tech. 14, 227 (1998). https://doi.org/10.1179/026708398790301593
  6. O. Comineli, R. abushosha, and B. Mintz, Mater. Sci. Tech. 15, 1058 (1999). https://doi.org/10.1179/026708399101506788
  7. Y. H. Kim, Effect of rolling conditions on edge crack formation during hot rolling of duplex stainless steel, http://www.postech.ac.kr/rolling2001/paper/B72.pdf (2001 ).
  8. B. Mintz, A. Tuling, and A. Delgado, Mater. Sci. Tech. 19, 1721 (2003). https://doi.org/10.1179/174328413X13789824293948
  9. D. N. Crowther, M. J. W. Green, and P. S. Mitchell, Mater. Sci. For. 284, 469 (1998)
  10. R. Abushosha, R. Vipond, and B. Mintz, Mater. Sci. Tech. 7, 1101 (1991) https://doi.org/10.1179/026708391790182962
  11. X. M. Wang and X. L. He, ISIJ Int. 42, 38 (2002). https://doi.org/10.2355/isijinternational.42.38
  12. R. Abushosha, R. Vipond, and B. Mintz, Mater. Sci. Tech. 7, 613 (1991) https://doi.org/10.1179/026708391790184636
  13. K. W. Andrews, JISI, 203, 721 (1965).
  14. E. Lopez-Chipres, I. Mejya, C. Maldonado, A. Bedolla- Jacuinde, and J. M. Cabrera, Mater. Sci. Eng. A460, 464 (2007)
  15. F. Zarandi and S. Yue, ISIJ Int. 46, 591 (2006). https://doi.org/10.2355/isijinternational.46.591
  16. H. Luo, L. P. Karjalainen, D. A. Porter, H. M. Liimatainen and Y. Zhang, ISIJ Int. 42, 273 (2002). https://doi.org/10.2355/isijinternational.42.273
  17. S. G. Hong, K. B. Kang, and C. G. Park, Scr. Mater. 46,163 (2002) https://doi.org/10.1016/S1359-6462(01)01214-3
  18. V. M. Goritskii, G. R. Shneiderov, and V. I. Bogdanov, Met. Sci. Heat Treat. 33, 353 (1991). https://doi.org/10.1007/BF00775583