• 제목/요약/키워드: Nb addition

검색결과 491건 처리시간 0.022초

SrTiO$_{3}$ 고용에 따른 Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-PbTiO$_{3}$계 세라믹스의 유전 및 전왜특 (Dielectric and strain properties of Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-PbTiO$_{3}$ Ceramic with Respect to the Variation of SrTiO$_{3}$ Substitution)

  • 지승한;이해영;이덕출;이진걸;이연학
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.235-241
    • /
    • 1996
  • In this paper dielectric and electrostrictive strain properties of (1-y-x)Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-PbTiO$_{3}$$-yPbTiO_{3}-xSrTiO_{3}[(1-y-x)PMN-yPT-xST]$ ceramics fabricated by using columbite precursor method have been investigated with the substitution of SrTiO$_{3}$(ST). Dielectric constant of the specimens increased with the increase of ST content up to 5[m/o] and decreased with further substitution of ST. And the pyrochlore phase decreased with the increase of ST content up to 5[m/o] in XRD analysis. The elimination of the pyrochlore phase improved dielectric constants. The electrostrictive strains generated by AC electric field have the highest value at 5[m/o] SrTiO$_{3}$ addition and the hysteresis of strain ranged from 12 to 20[%]. The electrostrictive strain at various temperature investigated in the temperature range of $-50[^{\circ}C]~74[^{\circ}C].$ In higher temperature than phase transition region, it showed paraelectric property which shows very small hystersis.

  • PDF

$Li_2O$ 첨가에 따른 $(Na_{0.47}K_{0.47}Li_{0.06})NbO_3$ 세라믹스의 압전특성과 미세조직의 변화 (Piezoelectric Properties and Microstructures of $Li_2O$ excess $(Na_{0.47}K_{0.47}Li_{0.06})NbO_3$ Ceramics)

  • 김민수;전소현;박정주;전순종;민복기;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.256-256
    • /
    • 2007
  • As a candidate for lead-free piezoelectric materials, dense ($(Na_{0.47}K_{0.47}Li_{0.06})NbO_3$ (LNKN6) ceramics were developed by conventional sintering process. Sintering temperature was lowered by adding $Li_2O$ as a sintering aid. Abnormal grain growth in the LNKN6 ceramics was observed with varying $Li_2O$ content. The electrical properties of LNKN6 ceramics were investigated as a function of $Li_2O$ concentration. When the sample sintered at $1000^{\circ}C$ for 4h with the addition of 1 mol% $Li_2O$, electromechanical coupling factor ($k_p$) and piezoelectric coefficient ($d_{33}$) of LNKN6 ceramics were found to reach the highest values of 0.40 and 184 pC/N, respectively.

  • PDF

Ti-Nb첨가 저합금강 용접열영향부에서의 열-응력 이력이 미세조직 및 기계적 성질에 미치는 영향에 관한 연구 (Microstructure Evolution and Its Effect on Strength during Thermo-mechanical Cycling in the Weld Coarse-grained Heat-affected Zone of Ti-Nb Added HSLA Steel)

  • 문준오;이창희
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.44-49
    • /
    • 2013
  • The influence of thermo-mechanical cycling on the microstructure and strength in the weld coarse-grained heat affected zone (CGHAZ) of Ti-Nb added low carbon HSLA steel was explored through Vickers hardness tests, nanoindentation experiments, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Undeformed and deformed CGHAZs were simulated using Gleeble simulator with different heat inputs of 30kJ/cm and 300kJ/cm. At high heat input of 300kJ/cm, the CGHAZ consisted of ferrite and pearlite and then their grain sizes were not affected by deformation. At low heat input of 30kJ/cm, the CGHAZ consisted of lath martensite and then the sizes of prior austenite grain, packet and lath width decreased with deformation. In addition, the fraction of particle increased with deformation and this is because the precipitation kinetics was accelerated by deformation. Meanwhile, the Vickers and nanoindentation hardness of deformed CGHAZ with 30kJ/cm heat input were higher than those of undeformed CGHAZ, which are due to the effect of grain refinement and precipitation strengthening.

nm-수준의 상분리를 이용하여 제조한 고강도 고인성 철계 비정질 합금 (Fe-based Amorphous Alloy with High Strength and Toughness Synthesized based on nm-scale Phase Separation)

  • 이광복;박경원;이상호;이재철
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Experiments have demonstrated that the addition of a moderate amount of V to $Fe_{52}Co_{(20-x)}B_{20}Si_4Nb_4V_x$ amorphous alloy enhances the plasticity of the alloy. In particular, $Fe_{52}Co_{17.5}B_{20}Si_4Nb_4V_{2.5}$ alloy withstood a maximum of 8.3% strain prior to fracture along with a strength exceeding 4.7 GPa. Energy dispersive x-ray spectroscopy conducted on the $Fe_{52}Co_{17.5}B_{20}Si_4Nb_4V_{2.5}$ alloy exhibited evidence of compositional modulation, indicating that nm-scale phase separation had occurred at local regions. In this study, the role played by nm-scale phase separation on the plasticity was investigated in terms of structural disordering and shear localization in order to better understand the structural origin of the enhanced plasticity shown by the developed alloy.

핵연료 피복관의 산세 공정 시 Nb 함량에 따른 SMUT 특성 (Evaluation of SMUT Properties according to Nb Content in the Pickling Process of Nuclear Fuel Cladding Tube)

  • 문종한;이영준;이진행;홍종원;이종현
    • 한국재료학회지
    • /
    • 제29권8호
    • /
    • pp.483-490
    • /
    • 2019
  • Currently, the Korean nuclear industry uses ZIRLO as material for nuclear fuel cladding(zirconium alloy). KEPCO Nuclear Fuel is in the process of developing a HANA alloy to enable domestic production of cladding. Cladding manufacture involves multistage heat treatments and pickling processes, the latter of which is vital for the removal of defects and impurities on the cladding surface. SMUT that forms on the cladding surface during such pickling process is a source of surface defects during heat treatment and post-treatment processes if not removed. This study analyzes ZIRLO, HANA-4, and HANA-6 alloy claddings to extensively study the SEM/EDS, XRD, and particle size characteristics of SMUT, which are second phase particles that are formed on the cladding surface during pickling processes. Using the analysis results, this study observes SMUT formation characteristics according to Nb concentration in Zr alloys during the washing process following the pickling process. In addition, this study observes SMUT removal characteristics on cladding surfaces according to concentrations of nitric acid and hydrofluoric acid in the acid solution.

Effect of simulated double cycle welding on HAZ microstructure for HSLA steels

  • El-Kashif, Emad F.;Morsy, Morsy A.
    • Advances in materials Research
    • /
    • 제7권3호
    • /
    • pp.195-201
    • /
    • 2018
  • High Strength low alloy steels containing various levels of C, Nb and Mn were used and for each of which, a simulated double thermal cycle was applied with the same first peak temperature and different second peak temperatures to produce HAZ microstructure corresponding to multi-pass weld. Effect of double cycle second temperature on the microstructure was observed and compared with single cycle results obtained from previous works, it was found that the percentage of martensite austenite constituent (MA) increases by Nb addition for all steels with the same Mn content and the increase in Mn content at the same Nb content shows an increase in MA area fraction as well. MA area fraction obtained for the double cycle is larger than that obtained for the single cycle for all steels used which imply that MA will have great role in the brittle fracture initiation for double cycle and the inter-pass temperature should be controlled for medium and high-carbon Mn steel to avoid large area fraction of MA. The beneficial effects of Niobium obtained in single pass weld were not observed for the double cycle or multi pass welds.

Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite

  • Akman, Ferdi.;Ogul, H.;Ozkan, I.;Kacal, M.R.;Agar, O.;Polat, H.;Dilsiz, K.
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.283-292
    • /
    • 2022
  • Advanced radiation applications have been widely used and extended to many fields. As a result of this fact, choosing an appropriate shielding material based on the radiation application has become vital. In this regard, the integration of elements into polymer composites has been investigated and contributed to the quantity and quality of radiation shielding materials. This study reports photon attenuation parameters and electromagnetic shielding effectiveness of a novel polymer composite prepared with a matrix reinforced with three different proportions (5, 10, and 15 wt%) of niobium content. Addition of Nb dopant improves both photon attenuation and electromagnetic shielding effectiveness for the investigated composites. Therefore, Nb(15%) polymer composite with highest concentration has been found to be the best absorber for ionizing and non-ionizing radiations. Consequently, the performed analyzes provide evidences that the prepared Nb-reinforced polymer composite could be effectively used as photon radiation attenuator and electromagnetic shielding material.

Evaluation of radiation resistance of an austenitic stainless steel with nanosized carbide precipitates using heavy ion irradiation at 200 dpa

  • Ji Ho Shin ;Byeong Seo Kong;Chaewon Jeong;Hyun Joon Eom;Changheui Jang;Lin Shao
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.555-565
    • /
    • 2023
  • Despite many advantages as structural materials, austenitic stainless steels (SSs) have been avoided in many next generation nuclear systems due to poor void swelling resistance. In this paper, we report the results of heavy ion irradiation to the recently developed advanced radiation resistant austenitic SS (ARES-6P) with nanosized NbC precipitates. Heavy ion irradiation was performed at high temperatures (500 ℃ and 575 ℃) to the damage level of ~200 displacement per atom (dpa). The measured void swelling of ARES-6P was 2-3%, which was considerably less compared to commercial 316 SS and comparable to ferritic martensitic steels. In addition, increment of hardness measured by nano-indentation was much smaller for ARES-6P compared to 316 SS. Though some nanosized NbC precipitates were dissociated under relatively high dose rate (~5.0 × 10-4 dpa/s), sufficient number of NbC precipitates remained to act as sink sites for the point defects, resulting in such superior radiation resistance.

전기열량소자용 Ag 첨가량에 따른 K(Ta,Nb)O3 세라믹스의 구조적·전기적 특성 (Structural and Electrical Properties of K(Ta,Nb)O3 Ceramics with Variation of Ag Contents for Electrocaloric Devices)

  • 이민성;박병준;임정은;이삼행;이명규;박주석;이성갑
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.442-448
    • /
    • 2021
  • In this work, the (K1-xAgx)(Ta0.8Nb0.2)O3 (x=0.1-0.4) ceramics were fabricated using mixed-oxide method, and their structural and electrical properties were measured. All specimens represented a pseudo cubic structure with the lattice constant of 0.3989 nm. When 0.4 mol of Ag was added, second phases induced from metallic Ag and K2(Ta,Nb)6O16 phase were observed. Dielectric constant and dielectric loss of K(Ta0.8Nb0.2)O3 specimen doped with 0.3 mol of Ag were 2,737 and 0.446, respectively. The curie temperature was about -5℃, which does not change with Ag addition. The remanent polarization began to decrease sharply around 12~15℃, and the temperature at which the remanent polarization began to decrease as the applied voltage increased shifted to the high temperature side. The electrocaloric effect (ΔT) and electrocaloric efficiency (ΔT/ΔE) of the (K0.7Ag0.3)(Ta0.8Nb0.2)O3 ceramics were 0.01024℃ and 0.01825 KmV-1, respectively.

나노결정 Fe73Si16B7Nb3Cu1 연자성분말과 숯분말 혼합 복합성형체의 전자파흡수 특성 (Electromagnetic Wave Absorption Properties of Fe73Si16B7Nb3Cu1-Based Nanocrystalline Soft Magnetic Powder Composite Mixed with Charcoal Powder)

  • 김선이;김미래;손근용;박원욱
    • 한국분말재료학회지
    • /
    • 제16권4호
    • /
    • pp.291-295
    • /
    • 2009
  • The electromagnetic wave absorption sheets were fabricated by mixing of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline soft magnetic powder, charcoal powder and polymer based binder. The complex permittivity, complex permeability, and scattering parameter have been measured using a network analyzer in the frequency range of 10 MHz$\sim$10 GHz. The results showed that complex permittivity of sheets was largely dependent on the frequency and the amount of charcoal powder : The permittivity was improved up to 100 MHz, however the value was decreased above 1 GHz. The power loss of electromagnetic wave absorption data showed almost the same tendency as the results of complex permittivity. However, the complex permeability was not largely affected by the frequency, and the values were decreased with the addition of charcoal powder. Based on the results, it can be summarized that the addition of charcoal powder was very effective to improve the EM wave absorption in the frequency range of 10 MHz$\sim$1 GHz.