• Title/Summary/Keyword: Navigation system

Search Result 6,428, Processing Time 0.03 seconds

An Analysis of Future Ship Operation System under the e-navigation Environment

  • An, Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.259-265
    • /
    • 2015
  • It is clearly understood that e-navigation is beneficial to prevent collision and grounding of ships. The purpose of this study is to define and present a future ship operation system under the e-navigation environment in order to provide clear direction for the design of Korean e-navigation system. The future ship operation system consists of shipboard navigational system, shore supporting system and maritime communication system. To achieve the objectives of this study, the ship operation system was discussed separately into SOLAS ships and non-SOLAS ships in this study. In SOLAS ships, mariners become a system manager, choosing system presets, interpreting system output, and monitoring vessel response. In small ships and fishing vessels, mariners may enjoy their navigation by using the automatic tracking of ship's position on the portable electronic chart display. The improved bridge design, integrated and harmonized navigational system and single window reporting will reduce significantly the administrative and physical workload of mariners. Mariners can concentrate their attention more on navigational duty under the e-navigation environment. To build an effective Korean e-navigation system, the essential navigational functions and e-navigation services for small ships and fishing vessels must be identified and developed taking into account user needs.

Loosely-Coupled Vision/INS Integrated Navigation System

  • Kim, Youngsun;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • Since GPS signals are vulnerable to interference and obstruction, many alternate aiding systems have been proposed to integrate with an inertial navigation system. Among these alternate systems, the vision-aided method has become more attractive due to its benefits in weight, cost and power consumption. This paper proposes a loosely-coupled vision/INS integrated navigation method which can work in GPS-denied environments. The proposed method improves the navigation accuracy by correcting INS navigation and sensor errors using position and attitude outputs of a landmark based vision navigation system. Furthermore, it has advantage to provide redundant navigation output regardless of INS output. Computer simulations and the van tests have been carried out in order to show validity of the proposed method. The results show that the proposed method works well and gives reliable navigation outputs with better performance.

Development of MEMS-IMU/GPS Integrated Navigation System

  • Kim, Jeong Won;Nam, Chang Woo;Lee, Jae-Cheul;Yoon, Sung Jin;Rhim, Jaewook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.2
    • /
    • pp.53-62
    • /
    • 2014
  • In the guided missile and unmanned vehicle system, the navigation system is one of the most important components. Recently, low-cost effective smart projectiles and guided bomb are being developed using MEMS based navigation system which has high-G, low-cost and small size. In this paper, locally developed MEMS based GPS/INS integrated navigation system will be introduced in comparison with the state of the art of MEMS based navigation system. And technical design and development method is described to satisfy the required performance of GPS receiver, MEMS inertial sensor assembly, navigation computer and software.

Performance Analysis of Navigation Algorithm for GNSS Ground Station

  • Jeong, Seong-Kyun;Park, Han-Earl;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.32-37
    • /
    • 2008
  • Global Navigation Satellite System (GNSS) is been developing in many countries. The satellite navigation system has the importance in economic and military fields. For utilizing satellite navigation system properly, the technology of GNSS Ground Station is needed. GNSS Ground Station monitors the signal of navigation satellite and analyzes navigation solution. This study deals with the navigation software for GNSS Ground Station. This paper will introduce the navigation solution algorithm for GNSS Ground Station. The navigation solution can be calculated by the code-carrier smoothing method, the Kalman-filter method, the least-square method, and the weight least square method. The performance of each navigation algorithm in this paper is presented.

  • PDF

Modeling & Simulation Software Design for Coverage Analysis of Multiple Radio Positioning Integration System

  • Koo, Moonsuk;Kim, YoungJoon;So, Hyoungmin;Oh, Sang Heon;Kim, Seong-Cheol;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.47-57
    • /
    • 2016
  • Since the Global Navigation Satellite System (GNSS) may not provide navigation information due to external interferences, many countries have plans to prepare a backup system for this situation. One of the possible GNSS backup systems is a multiple radio positioning integration system in combination with the terrestrial radio navigation system. Before constructing such a GNSS backup system, M&S software is needed to analyze if the system satisfies the performance the required navigation performance. This study presents requirements of M&S software for coverage analysis of the navigation system, and proposes an M&S software design scheme on the basis of the requirements. The M&S software is implemented, and coverage analysis is performed to verify the validity of the proposed design scheme.

A Study on the Architectural Design Requirements of the Korean e-Navigation System (한국형 e-Navigation 시스템의 아키텍쳐 설계 요건에 관한 연구)

  • Park, Sang-Kook;Yoon, Dae-Gwun;Park, Jung-Dae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.111-112
    • /
    • 2015
  • IMO established an e-Navigation Strategy Implementation Plan(SIP) in 2014 and they aim to enforce in 2019. Accordingly, korean government also prepared e-Navigation SIP as the Next Maritime Safety Comprehensive Management System in 2015. The main content is to promote R&D by putting 131 billion won over the next five years from 2016 to 2020. On the other hand still in a situation that staying at the conception level of Korean e-Navigation System, by study the architectural design requirements of the Korean e-Navigation system, so we will be able to establish future research directions.

  • PDF

Existing System Improvement and Expected Configuration based on Risk Control Options for Implementation of e-Navigation

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • Common Maritime Data Structure (CMDS) is commonly used by shore and ship users in e-Navigation data domain. In the overarching of e-Navigation architecture, IHO uses S-1XX, a digital exchange standard for next-generation marine information, as data exchange standard. The current CMDS has the advantage of intuitively recognizing the overall structure of e-Navigation. However, it has disadvantage in that it does not allow stakeholders to easily understand benefits that e-Navigation can provide when implementing e-Navigation. In this study, the direction of improving existing system for effective e-Navigation implementation was proposed considering RCOs (Risk Control Options) with expected composition of ship/ shore/ communication system by sector.

Development of Range Sensor Based Integrated Navigation System for Indoor Service Robots (실내용 서비스 로봇을 위한 거리 센서 기반의 통합 자율 주행 시스템 개발)

  • Kim Gunhee;Kim Munsang;Chung Woojin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.785-798
    • /
    • 2004
  • This paper introduces the development of a range sensor based integrated navigation system for a multi-functional indoor service robot, called PSR (Public Service Robot System). The proposed navigation system includes hardware integration for sensors and actuators, the development of crucial navigation algorithms like mapping, localization, and path planning, and planning scheme such as error/fault handling. Major advantages of the proposed system are as follows: 1) A range sensor based generalized navigation system. 2) No need for the modification of environments. 3) Intelligent navigation-related components. 4) Framework supporting the selection of multiple behaviors and error/fault handling schemes. Experimental results are presented in order to show the feasibility of the proposed navigation system. The result of this research has been successfully applied to our three service robots in a variety of task domains including a delivery, a patrol, a guide, and a floor cleaning task.

Navigation

  • 노경식
    • Journal of the KSME
    • /
    • v.44 no.4
    • /
    • pp.69-74
    • /
    • 2004
  • Navigation이라고 하는 용어는 매우 다양한 분야에서 여러 가지 의미로 사용되고 있다. 예를 들어, 차량에 장착되어 운전자에게 지리 및 교통정보를 알려 주는 car navigation system, 미사일 등의 비행체가 원하는 곳으로 이동하기 위한 navigation system, PDA나 휴대폰 등 potable 전자기기의 입력을 위한 Pen입력장치에 사용되는 Pen궤적 추적 장치, 개인의 운동량을 측정하거나, 해저탐사, 등산 시 사용되는 personal navigation system, 가상현실게임 등 매우 다양한 분야에서 navigation 기술이 사용되고 있다.(중략)

  • PDF

INS/vision Integrated Navigation System in Environments with Insufficient Number of Landmarks (랜드마크가 충분하지 않은 환경에서의 관성/비전 통합항법시스템)

  • Kim, Youngsun;Hwang, Dong-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.123-131
    • /
    • 2014
  • An INS/vision integrated navigation algorithm is proposed for environments with insufficient number of landmarks. In the proposed algorithm, the raw measurements on the focal plane are directly used in order to cope with the situation where the number of landmarks are not sufficient. In addition to this, the combination of landmarks, which has smallest value of DOP, is used in the update of measurement in order to improve navigation performance. In order to evaluate the performance of the proposed integrated navigation system, Monte-Carlo simulation and van test was performed. The results of the simulation and experiment show that the proposed navigation system gives better navigation performance than an INS/vision integrated navigation system which does not use the raw measurements on the focal plane and the navigation system provides navigation solutions even in environments with insufficient number of landmarks.