• 제목/요약/키워드: Navigation Speed Control

검색결과 243건 처리시간 0.03초

적응 퍼지 제어를 이용한 이동 로보트의 자율 주행에 관한 연구 (A Study on the Autonomous Navigation of Mobile Robot using Adaptive Fuzzy Control)

  • 오준섭;박진배최윤호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.433-436
    • /
    • 1998
  • The objective of this paper is to design a adaptive fuzzy controller for autonomous navigation of mobile robot. The adaptive fuzzy controller has an advantage in data processing time and convergence speed. The basic idea of control is to induct membership function and fuzzy inference rules and to scale inducted membership function to suitable robot state. The adaptive fuzzy control method is applied to mobile robot and the simulation results show the effectiveness of our controller.

  • PDF

자율주행차량을 위한 비젼 기반의 횡방향 제어 시스템 개발 (Development of Vision-based Lateral Control System for an Autonomous Navigation Vehicle)

  • 노광현
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.19-25
    • /
    • 2005
  • This paper presents a lateral control system for the autonomous navigation vehicle that was developed and tested by Robotics Centre of Ecole des Mines do Paris in France. A robust lane detection algorithm was developed for detecting different types of lane marker in the images taken by a CCD camera mounted on the vehicle. $^{RT}Maps$ that is a software framework far developing vision and data fusion applications, especially in a car was used for implementing lane detection and lateral control. The lateral control has been tested on the urban road in Paris and the demonstration has been shown to the public during IEEE Intelligent Vehicle Symposium 2002. Over 100 people experienced the automatic lateral control. The demo vehicle could run at a speed of 130km1h in the straight road and 50km/h in high curvature road stably.

체공성능 향상을 위한 확장날개 틸트로터 무인기의 제어법칙설계 (Control Law Design for a Tilt-rotor Unmanned Aerial Vehicle with a Nacelle Mounted WE (Wing Extension))

  • 강영신;박범진;조암;유창선
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1103-1111
    • /
    • 2014
  • The results of control law design for a tilt-rotor unmanned aerial vehicle that has a nacelle mounted wing extension (WE) are presented in this paper. It consists of a control surface mixer, stability and control augmentation system (SCAS), hold mode for altitude / speed / heading, and a guidance mode for preprogram and point navigation which includes automatic take-off and landing. The conversion corridor and the control moments derivatives between the original tilt-rotor and its variant of the nacelle mounted WE were compared to show the effectiveness of the WE. The nacelle conversion of the original tilt-rotor starts when the airspeed is greater than 30 km/h but its WE variant starts at 0 km/h in order to reduce the drag caused by the high incidence angle of the WE. The stability margins of the inner loop are presented with the optimization approach. The outer loops for the hold mode are designed with trial and error methods with linear and nonlinear simulation. The main control parameter for altitude control of the helicopter mode is thrust command and it is transferred to the pitch attitude command in airplane mode. Otherwise, the control parameter for the speed of the helicopter mode is the pitch attitude command and it is transferred to the thrust command in airplane mode. Therefore the speed and altitude hold mode are coupled to each other and are engaged at the same time when an internal pilot engages any of the altitude or speed hold modes. The nonlinear simulation results of the guidance control for the preprogrammed mode and point navigation are also presented including automatic take-off and landing in order to prove the full control law.

비용함수와 서브 골을 이용한 비선형 최적화 방법 기반의 이동로봇 장애물 회피 주행 (Mobile Robot Navigation with Obstacle Avoidance based on the Nonlinear Least Squares Optimization Method using the Cost Function and the Sub-Goal Switching)

  • 정영종;김곤우
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1266-1272
    • /
    • 2014
  • We define the mobile robot navigation problem as an optimization problem to minimize the cost function with the pose error between the goal position and the position of a mobile robot. Using Gauss-Newton method for the optimization, the optimal speeds of the left and right wheels can be found as the solution of the optimization problem. Especially, the rotational speed of wheels of a mobile robot can be directly related to the overall speed of a mobile robot using the Jacobian derived from the kinematic model. When the robot detects the obstacle using sensors, the sub-goal switching method is adopted for the efficient obstacle avoidance during the navigation. The performance was evaluated using the simulation and the simulation results show the validity of the proposed method.

퍼지-뉴럴을 이용한 이동 로봇의 장애물 충돌 회피 (Navigation of a mobile robot with stationary and moving obstacles using fuzzy-neural network)

  • 박찬규;최정원;권순학;이석규
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.990-994
    • /
    • 1999
  • This paper proposes a new fuzzy-neural algorithm for navigation of a mobile robot with stationary and moving obstacles environment. The proposed algorithm uses fuzzy algorithm for its speed control and neuralnetwork for effective collision avoidance. Some computer simulation results for a mobile robot equipped with ultrasonic range sensors show that the suggested navigation algorithm is very effective to escape in stationary and moving obstacles environment.

  • PDF

무한궤도 이동 로봇의 주행환경 처리 방법 (The Method of Navigation-speed Processing for the Unlimited-track Mobile Robot)

  • 최광선;박기두;최한수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2393-2395
    • /
    • 2001
  • The mobile robot is used as an instrument of transportation in automated plant. But the greater part of the moving method is the wheel-type. The wheel-type robot is easier control than the track-type, However the track-type is better than the wheel-type in bad landform(bend landform, an incline plane, stairs). In this paper, we propose the navigation algorithm of track-type robot in order to improve a defect of wheel-type. We experiment in bend landfrom and even ground to differentiate the navigation method. To estimate robot pose, we use the 80196 in a close distance and the vision-board in a long distance. Each data is managed in main PC and then the part of managing correspond to every sensor. We also use twelve supersonic wave-sensors to recognize external surroundings. As the result of experiment, we analyze the algorithm of control and make possible surroundings-adaptation.

  • PDF

[ $H_{\infty}$ ] LATERAL CONTROL OF AN AUTONOMOUS VEHICLE USING THE RTK-DGPS

  • Ryu, J.H.;Kim, C.S.;Lee, S.H.;Lee, M.H.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.583-591
    • /
    • 2007
  • This paper describes the development of the $H_{\infty}$ lateral control system for an autonomous ground vehicle operating a limited area using the RTK-DGPS(Real Time Kinematic-Differential Global Positioning System). Before engaging in autonomous driving, map data are acquired by the RTK-DGPS and used to construct a reference trajectory. The navigation system contains the map data and computes the reference yaw angle of the vehicle using two consecutive position values. The yaw angle of the vehicle is controlled by the $H_{\infty}$ controller. A prototype of the autonomous vehicle by the navigation method has been developed, and the performance of the vehicle has been evaluated by experiment. The experimental results show that the $H_{\infty}$ controller and the RTK-DGPS based navigation system can sufficiently track the map at low speed. We expect that this navigation system can be made more accurate by incorporating additional sensors.

Assessment of Safe Navigation Including the Effect of Ship-Ship Interaction in Restricted Waterways

  • Lee, Chun-Ki
    • 한국항해항만학회지
    • /
    • 제27권3호
    • /
    • pp.247-252
    • /
    • 2003
  • This paper is mainly concerned with the assessment of safe navigation between ships moving each other in restricted waterways. The numerical simulation of manoeuvring motion was conducted parametrically to propose an appropriate safe speed and distance, which is required to avoid sea accident under the different conditions, such as ship-velocity ratios, ship-length ratios, separation and stagger between ships. As for the calculation parameters, the ratios of velocity difference between two ships were considered as 0.6, 1.2, 1.5 and the ones of ship-length difference were regarded were regarded as 0.5, 1.0, 1.18. From the inspection of this investigation, it indicates the following result. Firstly, the separation between ships is more needed for the small vessel, compared to the large vessel. Secondly, the lateral distance between ships is necessarily required for the velocity ration of 1.2, compared to the cases of 0.6 and 1.5. The manoeuvring characteristics based on this investigation will be very useful for keeping the safety of navigation from the practical point of ships design and traffic control in confined water.

Error Analysis of the Navigation System with Asynchronous Gyros

  • Kim, Kwang-Jin;Lee, Tae-Gyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.177.2-177
    • /
    • 2001
  • The asynchronous gyro outputs in the 3-axis navigation system are defined as each of gyros has its own output frequency. In this case, the navigation system has gyro outputs concurrently with the sensor mechanical frequency instead of the attitude frequency. So, there is an asynchronous error between gyro outputs and attitude calculation. In this paper, we analyze the gyro output error caused by the asynchronous gyro and present the high speed sampling technique and the extrapolation and interpolation of gyro outputs for synchronizing the gyro outputs.

  • PDF

Guidance Law for a Flight Vehicle after Burnout

  • Dohi, Naoto;Baba, Yoriaki;Takano, Hiroyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.82.2-82
    • /
    • 2002
  • The new guidance law for a missile with the varying velocity after the rocket motor burned out is presented. This guidance is mechanized by combining the proportional navigation and the pure pursuit navigation. Some simulations are performed and then the simulation results show that the guidance law presented is effective even if the vehicle speed decreases significantly and has higher off-boresight ability than the proportional navigation.

  • PDF