• Title/Summary/Keyword: Navigation Message Error

Search Result 33, Processing Time 0.03 seconds

Analysis of Influences due to Navigation Message Error of GPS Signals on Receiver (GPS 항법메시지 이상이 수신기에 미치는 영향 분석)

  • Kang, Hee-Won;Cho, Deuk-Jae;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2223-2229
    • /
    • 2010
  • The integrity monitoring of anomalous GPS signal have been researched because of the degradation of GPS satellite performance. It is known that anomalous GPS signal can occur by failure of GPS satellite, sudden increase of ionosphere delay error, SA, wrong modeling for navigation parameters from control segment, and an electromagnetic wave interference, etc. In case of GPS anomaly by satellites can arise from carrier frequency, code and navigation message. In this paper, the scenarios with navigation message errors were made by using GPS simulator, and the influences of GPS navigation message error to receiver were analysed. The anomalies of preamble, bits related TOW count message, subframe ID in HOW, bits related satellite healthy, and the other navigation message errors were described and simulated. Also, the number of satellites, DOP and pseudorange are analyzed to know how the anomalous signal can affect on GPS receiver.

Development of MATLAB GUI-based Software for Performance Analysis of RNSS Navigation Message and WAD-RNSS Correction (지역 위성항법시스템 항법메시지 및 광역 보정정보 성능 분석을 위한 MATLAB GUI 기반 소프트웨어 개발)

  • Jaeuk Park;Bu-Gyeom Kim;Changdon Kee;Donguk Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.510-518
    • /
    • 2023
  • This paper introduces a MATLAB graphical user interface (GUI) based software for performance analysis of navigation message and wide area differential correction of regional navigation satellite system (RNSS). This software was developed to analyze satellite orbit/clock-related performance of navigation message and wide area differential correction simulating RNSS for regions near Korea based on different distributions of monitor and reference stations. As a result of software operation, navigation message and wide area differential correction are given as output in MATLAB file format. From the analysis of output, it was confirmed that valid navigation message and wide area differential correction could be generated from the results about statistical feature of orbit and clock prediction errors, cm-level fitting errors for navigation message parameters, and 81.9% enhancement in range error for wide area differential correction.

Study on the time-delay compensation of RTK correction message for improvement of continuous position surveying performance under unexpected temporal datalink loss/cut-off (RTK 보정정보 난수신 환경에서의 측위연속성 향상을 위한 시간지연 보상연구)

  • Park, Byung-Woon;Song, June-Sol;Kee, Chang-Don;Yang, Chul-Soo;Tcha, Dek-Kie
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.625-631
    • /
    • 2010
  • In this paper, robustness performance of SNUR message is compared with those of existing ones, RTCM(Radio Technical Commission for Maritime Services) v2 MT(Message Type) 18/19 and MT 20/21 under a poor broadcast condition such as temporary data loss or disconnection We defined the temp oral data loss as 2 second delay and reconnection after disconnection as 7 second latency, and then evaluated its robustness for each latency case by double differentiating the observables. Our result shows that SNUR protocol method can reduce the latency error of the existing RTCM messages by 30~60%. Moreover, a rover using SNUR message, whose latency error is bounded within 1/4 L1 wave length, can figure out its own fixed position continuously in spite of 7 second disconnection, while the other using RTCM message, whose error is larger than half wave length, cannot keep its previous fixed solution.

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

A Design and Implementation of Software Defined Radio for Rapid Prototyping of GNSS Receiver

  • Park, Kwi Woo;Yang, Jin-Mo;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.189-203
    • /
    • 2018
  • In this paper, a Software Defined Radio (SDR) architecture was designed and implemented for rapid prototyping of GNSS receiver. The proposed SDR can receive various GNSS and direct sequence spread spectrum (DSSS) signals without software modification by expanded input parameters containing information of the desired signal. Input parameters include code information, center frequency, message format, etc. To receive various signal by parameter controlling, a correlator, a data bit extractor and a receiver channel were designed considering the expanded input parameters. In navigation signal processing, pseudorange was measured based on Coordinated Universal Time (UTC) and appropriate navigation message decoder was selected by message format of input parameter so that receiver position can be calculated even if SDR is set up various GNSS combination. To validate the proposed SDR, the software was implemented using C++, CUDA C based on GPU and USRP. Experimentation has confirmed that changing the input parameters allows GPS, GLONASS, and BDS satellite signals to be received. The precision of the position from implemented SDR were measured below 5 m (Circular Error Probability; CEP) for all scenarios. This means that the implemented SDR operated normally. The implemented SDR will be used in a variety of fields by allowing prototyping of various GNSS signal only by changing input parameters.

Multipath Error Analysis and Scenario Generation for Verifying KRS Environment

  • Cho, Sunglyong;Choi, Heonho;Lee, Byungseok;Nam, Giwook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.71-77
    • /
    • 2020
  • KRS which is subsystem of Korea Augmentation Satellite System (KASS) performs a role of collecting and monitoring GPS signals. In order to generate the accurate correction message, the site which meets the requirements should be selected and verification to meet each requirement should be accompanied. When the sites are selected, the environmental considerations are EMI, clear horizon (CH) and multipath. Of these, EMI and CH can be checked for satisfaction by instrumentation, but multipath error is difficult to predict. Therefore, multipath error analysis for the installation position of actual antenna at each KRS site should be preceded, and multipath scenario should be generated for each location to analyze the effects of the resulting system performance. In this paper, based on satellite signals collected from each KRS sites, the method for analyzing multipath error in each KRS sites is described, and the multipath error is analyzed. Also to perform an analysis of the effects on system performance due to multipath error, multipath error modeling is performed for the generation of simulation scenarios.

Assisted SBAS Global Navigation Satellite System Operation Method for Reducing SBAS Time to First Fix (SBAS 보강항법 초기 위치 결정 시간 단축을 위한 A-SGNSS 운용 방안)

  • Lee, Ju Hyun;Kim, Il Kyu;Seo, Hung Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.92-100
    • /
    • 2020
  • Satellite-based argumentation systems (SBAS) is a system that enhances the accuracy, integrity, availability and continuity of GNSS navigation users by using geostationary orbit (GEO) satellites to send correction information and the failures of global navigation satellite system (GNSS) satellites in the form of messages. The correction information provided by SBAS is pseudorange error, satellite orbit error, clock error, and ionospheric delay error at 250 bps. Therefore, A lot of message processing are required for the SBAS navigation. There is a need to reduce SBAS time to first fix (TTFF) for using SBAS navigation in systems with short operating time. In this paper, A-SGNSS operation method was proposed for reducing SBAS TTFF. Also, A-SGNSS TTFF and availability were analyzed.

Variable Length CAN Message Compression Using Bit Rearrangement (비트 재배열을 이용한 가변길이 CAN 메시지 압축)

  • Cho, Kyung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.51-56
    • /
    • 2011
  • In this paper, we propose a CAN message compression method using bit rearrangement to reduce the CAN bus load and the error probability during the transmission of CAN messages. In conventional CAN message compression methods, message compression is accomplished by sending only the differences between the previous data and the current data. In the proposed method, the difference bits are rearranged to further increase the compression efficiency. By simulations in car applications, it is shown that the CAN transmission data is further reduced up to 26% by the proposed method, compared with the conventional method.

A Study On Precision Enhancement Of The Ship's Position By AIS-based DGPS Service (AIS기반 DGPS 서비스에 의한 선박위치정보 정밀도 향상에 관한 연구)

  • Roh, Joung-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.375-378
    • /
    • 2009
  • AIS ship position transmitted from ships has been used position data generated by GPS, whose range of error is approximately 30nm. However, precision enhancement of the ship's position could be possible using DGPS correction information. More precise and accurate AIS ship position could be obtained broadcasting DGNSS Message(AIS Message 17) from ships without high-priced DGPS Beacon Receivers.

  • PDF

Study on for Simulation of GNSS Signal Generation (위성항법 신호생성 시뮬레이터 구현을 위한 신호생성 알고리즘 연구)

  • Kim, Tae-Hee;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon;Hwang, Dong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1148-1156
    • /
    • 2009
  • ETRI has developed GNSS digitized IF signal generator for providing test and evaluation environment for various software level application and navigation algorithm in Global Navigation Satellite System(GNSS). GNSS digitized IF signal generator provides two main capabilities, GPS and Galileo raw data generation and digitized IF signal generation. GNSS digitized IF signal generator consists of five main modules which are GNSS Satellite Orbit Simulation Module, Navigation Message Generation Module, Error Generation Module, GNSS IF Signal Generation Module, and Message & Signal Steering Module. We verified the signal generated by the GNSS signal generation algorithm using software receiver for generation of signal brother to real GNSS signal.