• 제목/요약/키워드: Navier-Stokes Flow

검색결과 1,581건 처리시간 0.024초

수학적 이론을 이용한 이차원 곡면 덕트의 최적형상 설계 (Optimal Shape Design of a 2-D Curved Duct Using a Mathematical Theory)

  • 임석현;최해천
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1325-1334
    • /
    • 1998
  • The objectives of the present study are to develop a systematic method rather than a conventional trial-and-error method for an optimal shape design using a mathematical theory, and to apply it to engineering problems. In the present study, an optimal condition for a minimum pressure loss in a two-dimensional curved duct flow is derived and then an optimal shape of the curved duct is designed from the optimal condition. In the design procedure, one needs to solve the adjoint Navier-Stokes equations which are derived from the Navier-Stokes equations and the cost function. Therefore, a computer code of solving both the Navier-Stokes and adjoint Navier-Stokes equations together with an automatic grid generation is developed. In a curved duct flow, flow separation occurs due to an adverse pressure gradient, resulting in an additional pressure loss. Optimal shapes of a curved duct are obtained at three different Reynolds numbers of 100, 300 and 800, respectively. In the optimally shaped curved ducts, the separation region does not exist or is significantly reduced, and thus the pressure loss along the curved duct is significantly reduced.

OPTIMAL CONTROL PROBLEM OF NAVIER-STOKES EQUATIONS FOR THE DRIVEN CAVITY FLOW

  • Lee, Yong-Hun
    • Journal of applied mathematics & informatics
    • /
    • 제6권1호
    • /
    • pp.291-301
    • /
    • 1999
  • We study an optimal control problem of the fluid flow governed by the navier-Stokes equations. The control problem is formulated with the flow in the driven cavity. Existence of an optimal solution and first-order optimality condition of the optimal control are derived. We report the numerical results for the finite eleme수 approximations of the optimal solutions.

2차원 압축성 Navier-Stokes 방정식에 의한 터빈 익렬유동장의 수치 시뮬레이션 (Numerical Simulation of Turbine Cascade Flowfields Using Two Dimensional Compressible Navier-Stokes Equations)

  • 정희택;김주섭;신필용;최범석
    • 동력기계공학회지
    • /
    • 제3권4호
    • /
    • pp.16-21
    • /
    • 1999
  • Numerical simulation on two-dimensional turbine cascade flow has been performed using compressible Navier-Stokes equations. The flow equations are written in a cartesian coordinate system, then mapped into a generalized body-fitted ones. All direction of viscous terms are incoporated and turbulent effects are modeled using the extended ${\kappa}-{\epsilon}$ model. Equations are discretized using control volume SIMPLE algorithm on the nonstaggered grid sysetem. Applications are made at a VKI turbine cascade flow in atransonic wind-tunnel and compared to experimental data. Present numerical results are shown to be in good agreement with the experimental results and simulate the compressible viscous flow characteristics inside the turbine blade passage.

  • PDF

Fractional-Step법을 이용한 비압축성 비정상 Navier-Stokes 방정식의 유한 요소해석 (Finite Element Analysis of Incompressible Transient Navier-Stokes Equation using Fractional-Step Methods)

  • 김형민;이신표
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.458-465
    • /
    • 2003
  • The main objective of the research is to develop a research code solving transient incompressible Navier-Stokes equation. In this research code, Adams-Bashforth method was applied to the convective terms of the navier stokes equation and the splitted equations were discretized spatially by finite element methods to solve the complex geometry problems easily. To reduce the divergence on the boundaries of pressure poisson equation due to the unsuitable pressure boundary conditions, multi step approximation pressure boundary conditions derived from the boundary linear momentum equations were used. Simulations of Lid Driven Flow and Flow over Cylinder were conducted to prove the accuracy by means of the comparison with results of the previous workers.

비대칭급확대채널의 층류유동 및 열전달 해석 (Analysis of Laminar Flow and Heat Transfer in Asymmetric, Sudden Expansion Channel)

  • 원승호;맹주성;손병진
    • 대한설비공학회지:설비저널
    • /
    • 제13권1호
    • /
    • pp.5-13
    • /
    • 1984
  • This analysis of numerical procedure is prediction of laminar flow and heat transfer at two dimension and steady flow in asymmetric sudden expansion channel. At former study, to analyse the flows with separation, the full Navier-Stokes equation is used, but there are many difficulties to analyse, and although significant progress has been made in the development of efficient computational methods for the Navier-Stokes equations, very large computation times are still required. In case of reward-facing flow, boundary-layer equation is used instead of full Navier-Stokes equation to analyse velocity fields, and result of this numerical analysis is good agreement with the given experimental study. In this case, since the computer time required for the boundary-layer calculation is an order of magnitude less than required for the solution of the full Navier-Stokes equation, this boundary-layer model provides a good approximate solution.

  • PDF

SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver와 Immersed Boundary Method (IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM)

  • 김건홍;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.397-403
    • /
    • 2010
  • The Immersed boundary method(IBM) is one of CFD techniques which can simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In these cases, pressure buildup near IB was found to occur when linear interpolation and stadard mass conservation is used and the interpolation scheme became complicated when higher order of interpolation is adopted. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. Bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies.

  • PDF

Navier-Stokes 유체의 최적 제어 (Optimal Control of steady Incompressible Navier-Stokes Flows)

  • 박재형;홍순조
    • 한국전산구조공학회논문집
    • /
    • 제15권4호
    • /
    • pp.661-674
    • /
    • 2002
  • 본 연구의 목적은 Navier-Stokes 유체의 최적 제어 문제의 해를 얻을 수 있는 효과적인 수치해석기법을 개발하고, 이를 물체의 항력(drag)을 최소화하는 문제에 적용하는데 있다. 본 연구는 항력을 줄인다는 산업적인 중요성과 함께 최적 제어를 위한 하나의 효과적인 최적화 기법의 모델을 제공하고 있다. 항력을 줄이기 위한 방법으로써 물체의 경계면에서 유체의 흡입(suction)과 방출(injection)이라는 기법을 사용하여 경계면에서 속도를 제어하였고, 목적함수로써 항력을 표현하기 위하여 에너지 소실의 변화율을 사용하였다. 컴퓨터 용량을 최소화하고 최적화에서의 해의 보장성과 경제성을 위하여, Navier-Stokes의 해석을 위하여 페널티 방법을 사용하였고 최적화 기법을 위해서는 SQP 방법을 사용하였다. 그리고 Navier-Stokes 유체는 대단히 비선형성을 나타내기 때문에 최적화를 수행하기에는 매우 힘들다. 이를 위하여 연속기법(continuation technique)을 사용하였다.

정사각형 관내의 전개 중인 난류 유동 해석 (Calculation of Developing Turbulent Flow in a Square Duct)

  • 신승주;박승오;김의택
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.170-177
    • /
    • 1989
  • 본 연구에서는 부분 포물형 Navier-Stokes 방정식에 Speziale이 제안한 비선형 k-.epsilon. 난류 모형을 적용하여 비직교 조표계에서 전개 중인 유동의 평균 속도와 난류 운동에너지 등을 예측하였다.

ANALYSIS AND COMPUTATIONS OF OPTIMAL AND FEEDBACK CONTROL PROBLEMS FOR NAVIER-STOKES EQUATIONS

  • Lee, Hyung-Chun
    • 대한수학회지
    • /
    • 제34권4호
    • /
    • pp.841-857
    • /
    • 1997
  • We present analysis and some computational methods for boundary optimal and feedback control problems for Navier-Stokes equations. We use one example to illustrate our methodology and ideas which are applicable to general control problems for Navier-Stokes equations. First, we discuss the existence of optimal solutions and derive an optimality system of equations from which an optimal solution may be computed. Then we present a gradient type iterative method. Finally, we present some numerical results.

  • PDF

축류터빈 블레이드의 공력학적 설계를 위한 Navier-Stokes방정식의 적용 (Application of Navier-Stokes Equations to the Aerodynamic Design of Axial-Flow Turbine Blades)

  • 정희택;정기섭;박준영;백제현;장범익;조수용
    • 한국전산유체공학회지
    • /
    • 제8권4호
    • /
    • pp.16-25
    • /
    • 2003
  • The design method for transonic turbine blades has been developed based on Wavier-Stokes equations. The present computing process is done on the four separate steps, i.e., determination of the blade profile, generation of the computational grids, cascade flow simulation and analysis of the computed results in the sense of the aerodynamic performance. The blade shapes are designed using the cubic polynomials under the control of the design parameters. Numerical methods for the flow equations are based on Van-Leer's FVS with an upwind TVD scheme on the finite volume. In the present study, numerical simulation has been done to investigate the effects of the design parameters on the aerodynamic peformance of the axial-flow turbine blades. Applications are made to the VKI transonic rotor blades. Computed results are analyzed with respect to four parameters and compared with the experimental data.