• Title/Summary/Keyword: Navier problem

Search Result 213, Processing Time 0.022 seconds

Application of A Local Preconditioning Method for 3-D Compressible Low Mach Number Flows (3차원 저속 압축성 유동 해석을 위한 국소 예조건화 기법 적용 연구)

  • Yoo, Il-Yong;Jin, Min-Suk;Kwak, Ein-Keun;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.939-946
    • /
    • 2008
  • Euler codes or Navier-Stokes codes for compressible flows suffer severe degradation in convergence as Mach number approaches zero. The convergence problem arose from the wide disparity in characteristic speeds can be solved using preconditioning methods without large modifications. In this paper, a preconditioned RANS(Reynolds Averaged Navier-Stokes) solver is developed for analysis of low Mach number flows. In order to validate the method, computational examples are chosen and the results are compared with the experimental data and the existing computed results showing a good accuracy and convergence characteristics for steady inviscid, laminar and turbulent flows at low Mach number.

Model for Flow Analysis of Fresh Concrete Using Particle Method with Visco-Plastic Flow Formulation (점소성 유동 입자법에 의한 굳지 않은 콘크리트의 유동해석 모델)

  • Cho, Chang-Geun;Kim, Wha-Jung;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.317-323
    • /
    • 2008
  • In the current study, A model for the flow analysis of fresh and highly flowable concrete has been developed using a particle method, the moving particle semi-implicit (MPS) method. The phenomena on the flow of concrete has been considered as a visco-plastic flow problem, and the basic governing equation of concrete particle dynamics has been based on the Navier-Stokes equation in Lagrangian form and the conservation of mass. In order to formulate a visco-plastic flow constitutive law of fresh concrete, concrete is modeled as a highly viscous material in the state of non-flow and as a visco-plastic material in the state of flow after reaching the yield stress of fresh concrete. A flow test of fresh concrete in the L-box was simulated and the predicted flow was well matched with the experimental result. The developed method was well showed the flow motion of concrete particles because it was formulated to be based on the motion of visco-plastic fluid dynamics.

Compressibility Effect in the Axisymmetric Internal Flow Past a Microgap (미세 간극을 지나는 축대칭 내부 유동의 압축성 효과 분석)

  • Kim, Seong-Soo;Chang, Se-Myong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1061-1069
    • /
    • 2010
  • In this study, a simplified axisymmetric model is proposed for the problem of compressible internal flow past a microgap. Using numerical and experimental methods, the phenomena of choked flows are observed; these flows are induced by the acceleration of subsonic flows past the narrow cross-section of an annular shape made by a microgap. The relation between mass flow rate and differential pressure is obtained, and by comparing the result with experimental results, the reliability of the numerical results is discussed. The generation of a supersonic jet flow and its diffraction are visualized by performing the numerical analysis of axisymmetric compressible Navier-Stokes equations. This investigation greatly extends the physical understanding of the axisymmetric compressible flow, which has a wide range of engineering applications, e.g., in the case of valves in automotive power systems.

Iterative Cumulant Moment Method for solution of Boltzmann Equation and its Application to Shock Wave Structure (반복적 Cumulant 모멘트 방법에 의한 Boltzmann 방정식의 해법과 충격파구조에 관한 연구)

  • Ohr, Young Gie
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.398-410
    • /
    • 1998
  • For non-linear solution of the Boltzmann equation, the cumulant moment method has been studied. To apply the method to the normal shock wave problem, we restricted ourselves to the monatomic Maxwell molecular gases. The method is based on the iterative approach developed by Maxwell-Ikenberry-Truesdell (MIT). The original MIT approach employs the equilibrium distribution function for the initial values in beginning the iteration. In the present work, we use the Mott-Smith bimodal distribution function to calculate the initial values and follow the MIT iteration procedure. Calculations have been carried out up to the second iteration for the profiles of density, temperature, stress, heat flux, and shock thickness of strong shocks, including the weak shock thickness of Mach range less than 1.4. The first iteration gives a simple analytic expression for the shock profile, and the weak shock thickness limiting law which is in exact accord with the Navier-Stokes theory. The second iteration shows that the calculated strong shock profiles are consistent with the Monte Carlo values quantitatively.

  • PDF

Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load

  • Esen, Ismail;Alazwari, Mashhour A.;Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.805-826
    • /
    • 2022
  • The free and live load-forced vibration behaviour of porous functionally graded (PFG) higher order nanobeams in the thermal and magnetic fields is investigated comprehensively through this work in the framework of nonlocal strain gradient theory (NLSGT). The porosity effects on the dynamic behaviour of FG nanobeams is investigated using four different porosity distribution models. These models are exploited; uniform, symmetrical, condensed upward, and condensed downward distributions. The material characteristics gradation in the thickness direction is estimated using the power-law. The magnetic field effect is incorporated using Maxwell's equations. The third order shear deformation beam theory is adopted to incorporate the shear deformation effect. The Hamilton principle is adopted to derive the coupled thermomagnetic dynamic equations of motion of the whole system and the associated boundary conditions. Navier method is used to derive the analytical solution of the governing equations. The developed methodology is verified and compared with the available results in the literature and good agreement is observed. Parametric studies are conducted to show effects of porosity parameter; porosity distribution, temperature rise, magnetic field intensity, material gradation index, non-classical parameters, and the applied moving load velocity on the vibration behavior of nanobeams. It has been showed that all the analyzed conditions have significant effects on the dynamic behavior of the nanobeams. Additionally, it has been observed that the negative effects of moving load, porosity and thermal load on the nanobeam dynamics can be reduced by the effect of the force induced from the directed magnetic field or can be kept within certain desired design limits by controlling the intensity of the magnetic field.

Failure Strength Analysis of Simply Supported Sandwich Slab Bridges made by Composite Materials (복합재료로 만들어진 단순지지 샌드위치 슬래브 교량의 파괴강도해석)

  • Han, Bong-Koo;Kim, Se-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • In this paper presented, a design method of sandwich slab bridge of simple supported made by composite materials. Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with sections, boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Thus, Finite Difference Method is used for analysis of the pertinent problem. For the design of bridge made by the composite materials, cross-section is used the form-core shape because of this shape is economical and profitable, and for output of the stress value used F.D.M. Based the experimental of a composite specialist, an equation expressing the rate of decrease of tensile strength of glass fibers based on increase of mass was obtained. From these equations, one can estimate the rate of tensile strength reduction due to increased size. Tasi-Wu failure criterion for stress space is used. Strength-failure analysis procedure, using these reduced tensile strength, is presented.

Evaluation of Optimization Models for a Dimpled Channel to Enhance Heat Transfer (딤플 유로의 열전달 증진을 위한 최적화모델 비교)

  • Shin, Dong-Yoon;Kim, Kwang-Yong;Samad, Abdus
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2552-2557
    • /
    • 2007
  • Shape optimization of an internal cooling passage with staggered dimples on single surface is performed and performances of surrogates are evaluated in this paper. Optimizations are performed so that turbulent heat transfer can be enhanced compromising with pressure loss due to friction. The three-dimensional governing differential equations have been solved to find the overall Nusselt number and friction factor which are related to the objective functions of this problem. Three design variables were selected among the dimensionless geometric variables. Basic surrogate models such as second order polynomial response surface approximation (RSA), Kriging meta-modeling technique, radial basis neural network (RBNN), and derived press based averaged (PBA) surrogate model are constructed. The optimal points are searched from the above constructed surrogates by sequential quadratic programming (SQP). It is shown that use of multiple surrogates can increase the robustness in prediction of better design with minimum computational cost.

  • PDF

Shock Reflection and Penetration Impinging into a Vortex(II) - Theoretical Model - (와동에 입사하는 충격파의 반사 및 투과 (II) -이론적 모델-)

  • Jang, Se-Myeong;Lee, Su-Gap
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1319-1324
    • /
    • 2002
  • A theoretical model on shock-vortex interaction is investigated using a numerical technique to solve Navier-Stokes equations. The shock-vortex interaction generated by this model based on the classical Rankin vortex is precisely investigated for a benchmark problem: Dosanjh and Weeks experiment. In terms of shock dynamics, the interaction is categorized to three stages: shock distortion, shock split, and shock-shock interaction. The quadrupolar structure of the sound source produced by the interaction is far supported with the present model, and the difference between experiment and theoretical model is also discussed in this paper.

Natural Convection Induced by g-jitter in an Enclosure under Null Gravity (무중력 상태하의 밀폐 용기 내에서 g-jitter에 의한 자연 대류)

  • Kim, Ki-Hyun;Hyun, Jae-Min;Kwak, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.522-527
    • /
    • 2001
  • Comprehensive numerical computations are made of side-heated squire cavity which is exposed to zero mean g-jitter. Numerical solutions are acquires to the governing two-dimensional Navier-Stokes equations for a Boussinesq fluid. When the system is exposed to pure sinusoidal g-jitter inclined to the vertical axis, in spite of zero mean gravity there exist non zero net flow fields [8]. The resonance phenomenon are observed in moderate Rayleigh number. And, by comprehensive numerical work, unlike[5], it is found that they are related with the overshoot phenomenon of the sudden gravity up problem.

  • PDF

Analysis of Compressible Flow Fields in a High Voltage Gas Circuit Breaker (초고압 가스차단기 내부의 압축성 유동장 해석)

  • Lee, J.C.;Oh, I.S.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.305-310
    • /
    • 2001
  • This paper presents the computational method for analyzing the compressible flow fields in a high voltage gas circuit breaker. There are many difficult problems in analyzing the gas flow in GCB due to complex geometry, moving boundary, shock wave and so on. In particular, the distortion problem of the grid due to the movement of moving parts can be worked out by the fixed grid technique. Numerical simulations are based on a fully implicit finite volume method of the compressible Reynolds-averaged Navier-Stokes equations to obtain the pressure, density, and velocity through the entire interruption process. The presented method is applied to the real circuit breaker model and the pressure in front of the piston is good agreement with the experimental one.

  • PDF