• Title/Summary/Keyword: Naval Vessels

Search Result 400, Processing Time 0.029 seconds

Estimation of drafts and metacentric heights of small fishing vessels according to loading conditions

  • Kim, Dong Jin;Yeo, Dong Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.199-212
    • /
    • 2020
  • A large percentage of maritime accidents in coastal seas are related to small fishing vessels. In order to investigate causes of maritime accidents, it is often necessary to carry out dynamic simulations for the estimation of trajectories and motions of vessels. Initial conditions of vessels such as main dimensions, loading conditions and hydrostatic properties are required for the accurate simulations. Small fishing vessels usually have few records of hydrostatic properties during their fishing operations. Therefore, in this study, estimation procedures for hydrostatic properties of small fishing vessels are proposed. At first, hull form characteristics of Korean small fishing vessels are investigated. Most of vessels have hard-chines and centerline skegs, they have similar hull forms. Bonjean curves of several small fishing vessels whose gross tonnages are below 10 tons are normalized with vessel breadths and depths. Representative bonjean curves are derived from normalized bonjean curves, and a representative hull plan is obtained as well. If the vessel loading conditions such as total weights and centers of gravity are given, fore and aft drafts can be calculated by using the representative bonjean curves with the constraint that weights and buoyancies are in equilibrium. Metacentric heights are also estimated by using the representative hull plan. Drafts and metacentric heights estimated by proposed iterative estimation procedures are compared with actual vessel data, estimated values are in good agreements with actual values. In addition, normalized fore and aft drafts, metacentric heights of vessels can be formulated as the linear functions of normalized total weights and centers of gravity. Empirical formulas of drafts and metacentric heights are proposed, and it is confirmed that the empirical formulas also provide reasonable results, which are similar to the results by iterative estimation procedures with representative bonjean curves and hull plan.

The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

  • Lee, Hyungmin;Jeong, Yeonhwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.403-411
    • /
    • 2012
  • This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from $25^{\circ}C$ to $300^{\circ}C$, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

Design Guide of Surface and Watertight LED Luminaires for Naval Vessels (함정용 노출.방수형 LED 조명기구의 설계 방안)

  • Kil, Gyung-Suk;Kim, Il-Kwon;Cho, Hyang-Eun;Kwon, Hyuk-Sang;Cho, Heung-Gi
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.654-660
    • /
    • 2011
  • This paper dealt with a design guide of LED luminaires to replace the surface and watertight fluorescent lamp (FL) fixtures for naval vessels. Several standards such as Korean Industrial Standard (KS), Korea Defence Standard (KDS) and US Military Standard (MIL) were compared in terms of safety and performance of lighting fixtures. The electrical and optical characteristics like power consumption, total luminous flux, and illumination distribution of the FL fixtures were experimentally analyzed to acquire design rules for LED luminaires. Based on the results, four types of LED luminaires were fabricated, and we proposed a design guide of LED luminaires for naval vessels which save power consumption of 44~51 [%] and increase total luminous flux of 8~13 [%].

Emission Prediction from Naval Ship Main Propulsive Diesel Engine under Steady Navigation (정속항해 시 함정 주 추진 디젤엔진의 배기가스 배출량 예측)

  • Lee, Hyung-Min;Park, Rang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.788-793
    • /
    • 2012
  • This study was focused on the estimations of air pollutants, such as PM(Particulate matters), SOx(Sulfur Oxides), $CO_2$(Carbon diOxides) and NOx(Nitrogen Oxides), from a diesel propulsion engine installed on a naval vessel. Legislative and regulatory actions for exhaust emissions from ships are being strengthened in international communities and national governments to protect human health and the environment. In this context, various technologies have been developed from all of the nations of the world to meet strict standards. These regulations are based on commercial ship applications and according to size, but are not suitable for military naval vessels, which have much different engine operating conditions and hull architectures. Additionally, there is no international emission control system for military ships. Emission factors have been updated for commercial ship types from work at various research institutes; however, it is difficult to develop emission factors for military vessels because of their characteristics. In this paper, exhaust emissions from diesel engines installed on naval vessels under steady navigation condition were estimated with emission inventory methodology applied to ocean going vessels using fuel-based methods and fuel sulfur content analysis.

Event-Triggered NMPC-Based Ship Collision Avoidance Algorithm Considering COLREGs (국제해상충돌예방규칙을 고려한 Event Triggered NMPC 기반의 선박 충돌 회피 알고리즘)

  • Yeongu Bae;Jaeha Choi;Jeonghong Park;Miniu Kang;Hyejin Kim;Wonkeun Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.155-164
    • /
    • 2023
  • About 75% of vessel collision accidents are caused by human error, which causes enormous economic loss, environmental pollution, and human casualties, thus research on automatic collision avoidance of vessels is being actively conducted. In addition, vessels must comply with the COLREGs rules stipulated by IMO when performing collision avoidance with other vessels in motion. In this study, the collision risk was calculated by estimating the position and velocity of other vessels through the Probabilistic Data Association Filter (PDAF) algorithm based on RADAR sensor data. When a collision risk is detected, we propose an event-triggered Nonlinear Model Predict Control (NMPC) algorithm that geometrically creates waypoints that satisfy COLREGs and follows them. To verify the proposed algorithm, simulations through MATLAB are performed.

A Study on the Stability Criteria of Small Vessels (소형선박의 복원성기준 연구)

  • Kwon, Soo-Yeon;Lee, Hee-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.285-295
    • /
    • 2007
  • In order to ensure safety of small vessels, the amended Ship Safety Act will come into force on 4th. Nov. 2007. This study is performed to suggest the stability criteria of fishing vessels and cargo ships of 12m in length and over but less than 24m in length which will be new object of amended Ship Safety Act. We have analyze the dimensions of domestic small vessels and the casualty reports of capsizing accidents. According to the analyzed result, 58 ships that are in the range of the dimension are modeled and the stability calculation has been carried out. The Stability for the 58 ships has been analyzed by comparing the result that applied the selected standard in the national standard to the stability calculation. Based on the regression analysis of the model ship's allowable transverse metacentric-heights under several stability requirements, stability criteria for small fishing vessels and cargo ships are proposed.

The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels

  • Storhaug, Gaute
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1096-1110
    • /
    • 2014
  • Whipping/springing research started in the 50'ies. In the 60'ies inland water vessels design rules became stricter due to whipping/springing. The research during the 70-90'ies may be regarded as academic. In 2000 a large ore carrier was strengthened due to severe cracking from North Atlantic operation, and whipping/springing contributed to half of the fatigue damage. Measurement campaigns on blunt and slender vessels were initiated. A few blunt ships were designed to account for whipping/springing. Based on the measurements, the focus shifted from fatigue to extreme loading. In 2005 model tests of a 4,400 TEU container vessel included extreme whipping scenarios. In 2007 the 4400 TEU vessel MSC Napoli broke in two under similar conditions. In 2009 model tests of an 8,600 TEU container vessel container vessel included extreme whipping scenarios. In 2013 the 8,100 TEU vessel MOL COMFORT broke in two under similar conditions. Several classification societies have published voluntary guidelines, which have been used to include whipping/springing in the design of several container vessels. This paper covers results from model tests and full scale measurements used as background for the DNV Legacy guideline. Uncertainties are discussed and recommendations are given in order to obtain useful data. Whipping/springing is no longer academic.

Study on the Manoeuvring Performance of a Fishing Vessel Based on CFD Simulation of the Hull Forms and Rudder Shapes

  • Hyeonsil Choi;Soo Yeon Kwon;Sang-Hyun Kim;In-Tae Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.129-136
    • /
    • 2023
  • To evaluate manoeuvring performance of merchant ships, the mathematical modeling group (MMG) or computational fluid dynamics (CFD) simulations are used. However, it is difficult to use the MMG to evaluate the manoeuvring performance of fishing vessels, thus research using CFD simulations is necessary. Also, since the course-changing and turning ability is crucial in fishing operations, a rudder design suitable for fishing vessels is necessary. This study designs a rudder using National Advisory Committee for Aeronautics (NACA) airfoil sections and evaluates its manoeuvring performance. A CFD model is used to evaluate the manoeuvring performance of the fishing vessel, and turning and zig-zag tests are conducted. The effectiveness of using CFD simulations based on Reynolds averaged Navier-Stokes equations to assess the manoeuvring performance of fishing vessels was validated. No significant difference was found in the manoeuvring performance for hull forms and rudder designs for course-changing ability. However, the original hull form showed superior turning performance. Among five rudders with varying aspect ratios and shapes, the rudder with 5.5% aspect ratio had the best turning performance. Regarding the rudder design for fishing vessels, NACA airfoil was employed, and a rudder aspect ratio of 5.5% based on the immersed hull side area is recommended.

Development of Complex Energy Saving Device

  • Lee, Kwi-Joo;An, Jung-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.1-5
    • /
    • 2012
  • A complex energy saving device has been developed for middle class vessels. The propulsive performance of the developed device is described through a model test. The pre-swirl stator, which recovers the rotational energy of the propeller slipstream, is a well-known energy saving device for large vessels. The pre-swirl stator for a large vessel is usually cast as a part of the stern frame and has a high cost. The manufacture of a cast stator for an existing vessel is almost impossible. The complex device that was developed can be fitted on astern frame by welding. The model tests show a 4-6% efficiency gain for middle class vessels with the developed appendages compared to those with bare hulls.