• Title/Summary/Keyword: Naturally occurring radioactive materials

Search Result 27, Processing Time 0.029 seconds

Development of Internal Dose Assessment Procedure for Workers in Industries Using Raw Materials Containing Naturally Occurring Radioactive Materials

  • Choi, Cheol Kyu;Kim, Yong Geon;Ji, Seung Woo;Koo, Boncheol;Chang, Byung Uck;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.291-300
    • /
    • 2016
  • Background: It is necessary to assess radiation dose to workers due to inhalation of airborne particulates containing naturally occurring radioactive materials (NORM) to ensure radiological safety required by the Natural Radiation Safety Management Act. The objective of this study is to develop an internal dose assessment procedure for workers at industries using raw materials containing natural radionuclides. Materials and Methods: The dose assessment procedure was developed based on harmonization, accuracy, and proportionality. The procedure includes determination of dose assessment necessity, preliminary dose estimation, airborne particulate sampling and characterization, and detailed assessment of radiation dose. Results and Discussion: The developed dose assessment procedure is as follows. Radioactivity concentration criteria to determine dose assessment necessity are $10Bq{\cdot}g^{-1}$ for $^{40}K$ and $1Bq{\cdot}g^{-1}$ for the other natural radionuclides. The preliminary dose estimation is performed using annual limit on intake (ALI). The estimated doses are classified into 3 groups ( < 0.1 mSv, 0.1-0.3 mSv, and > 0.3 mSv). Air sampling methods are determined based on the dose estimates. Detailed dose assessment is performed using air sampling and particulate characterization. The final dose results are classified into 4 different levels ( < 0.1 mSv, 0.1-0.3 mSv, 0.3-1 mSv, and > 1 mSv). Proper radiation protection measures are suggested according to the dose level. The developed dose assessment procedure was applied for NORM industries in Korea, including coal combustion, phosphate processing, and monazite handing facilities. Conclusion: The developed procedure provides consistent dose assessment results and contributes to the establishment of optimization of radiological protection in NORM industries.

Analysis of Radioactivity Concentration in Naturally Occurring Radioactive Materials Used in Coal-Fired Plants in Korea (국내 석탄연소 발전소에서 취급하는 천연방사성물질의 방사능 농도 분석)

  • Kim, Yong Geon;Kim, Si Young;Ji, Seung Woo;Park, Il;Kim, Min Jun;Kim, Kwang Pyo
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.173-179
    • /
    • 2016
  • Coals and coal ashes, raw materials and by-products, in coal-fired power plants contain naturally occurring radioactive materials (NORM). They may give rise to internal exposure to workers due to inhalation of airborne particulates containing radioactive materials. It is necessary to characterize radioactivity concentrations of the materials for assessment of radiation dose to the workers. The objective of the present study was to analyze radioactivity concentrations of coals and by-products at four coal-fired plants in Korea. High purity germanium detector was employed for analysis of uranium series, thorium series, and potassium 40 in the materials. Radioactivity concentrations of $^{226}Ra$, $^{228}Ra$, and $^{40}K$ were $2{\sim}53Bq\;kg^{-1}$, $3{\sim}64Bq\;kg^{-1}$, and $14{\sim}431Bq\;kg^{-1}$ respectively in coal samples. For coal ashes, the radioactivity concentrations were $77{\sim}133Bq\;kg^{-1}$, $77{\sim}105Bq\;kg^{-1}$, and $252{\sim}372Bq\;kg^{-1}$ in fly ash samples and $54{\sim}91Bq\;kg^{-1}$, $46{\sim}83Bq\;kg^{-1}$, and $205{\sim}462Bq\;kg^{-1}$ in bottom ash samples. For flue gas desulfurization (FGD) gypsum, the radioactivity concentrations were $3{\sim}5Bq\;kg^{-1}$, $2{\sim}3Bq\;kg^{-1}$, and $22{\sim}47Bq\;kg^{-1}$. Radioactivity was enhanced in coal ash compared with coal due to combustion of organic matters in the coal. Radioactivity enhancement factors for $^{226}Ra$, $^{228}Ra$, and $^{40}K$ were 2.1~11.3, 2.0~13.1, and 1.4~7.4 for fly ash and 2.0~9.2, 2.0~10.0, 1.9~7.7 for bottom ash. The database established in this study can be used as basic data for internal dose assessment of workers at coal-fired power plants. In addition, the findings can be used as a basic data for development of safety standard and guide of Natural Radiation Safety Management Act.

Rapid Screening of Naturally Occurring Radioactive Nuclides (238U, 232Th) in Raw Materials and By-Products Samples Using XRF

  • Park, Ji-Young;Lim, Jong-Myoung;Ji, Young-Yong;Lim, Chung-Sup;Jang, Byung-Uck;Chung, Kun Ho;Lee, Wanno;Kang, Mun-Ja
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.359-367
    • /
    • 2016
  • Background: As new legislation has come into force implementing radiation safety management for the use of naturally occurring radioactive materials (NORM), it is necessary to establish a rapid and accurate measurement technique. Measurement of $^{238}U$ and $^{232}Th$ using conventional methods encounter the most significant difficulties for pretreatment (e.g., purification, speciation, and dilution/enrichment) or require time-consuming processes. Therefore, in this study, the applicability of ED-XRF as a non-destructive and rapid screening method was validated for raw materials and by-product samples. Materials and Methods: A series of experiments was conducted to test the applicability for rapid screening of XRF measurement to determine activity of $^{238}U$ and $^{232}Th$ based on certified reference materials (e.g., soil, rock, phosphorus rock, bauxite, zircon, and coal ash) and NORM samples commercially used in Korea. Statistical methods were used to compare the analytical results of ED-XRF to those of certified values of certified reference materials (CRM) and inductively coupled plasma mass spectrometry (ICP-MS). Results and Discussion: Results of the XRF measurement for $^{238}U$ and $^{232}Th$ showed under 20% relative error and standard deviation. The results of the U-test were statistically significant except for the case of U in coal fly ash samples. In addition, analytical results of $^{238}U$ and $^{232}Th$ in the raw material and by-product samples using XRF and the analytical results of those using ICP-MS ($R^2{\geq}0.95$) were consistent with each other. Thus, the analytical results rapidly derived using ED-XRF were fairly reliable. Conclusion: Based on the validation results, it can be concluded that the ED-XRF analysis may be applied to rapid screening of radioactivities ($^{238}U$ and $^{232}Th$) in NORM samples.

ANALYSIS OF RADIOACTIVE IMPURITIES IN ALUMINA AND SILICA USED FOR ELECTRONIC MATERIALS

  • Lee Kil-Yong;Yoon Yoon-Yeol;Cho Soo-Young;Kim Yong-Je;Chung Yong-Sam
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.423-426
    • /
    • 2006
  • A developed neutron activation analysis(NAA) and gamma-spectrometry were applied to improve the analytical sensitivity and precision of impurities in electronic-circuit raw materials. It is well known that soft errors in high precision electronic circuits can be induced by alpha particles emitted from naturally occurring radioactive impurities such as U and Th. As electronic circuits have recently become smaller in dimension and higher in density, these alpha-particle emitting radioactive impurities must be strictly controlled. Therefore, new NAA methods have been established using a HTS(Hydraulic Transfer System) irradiation facility and a background reduction method. For eliminating or stabilizing fluctuated background caused by Rn-222 and its progeny nuclides in air, a nitrogen purging system is used. Using the developed NAA and gamma-spectrometry, ultra trace amounts of U(0.1ng/g) and Th(0.01ng/g) in an alumina ball and high purity silica used for an epoxy molding compound (EMC) could be determined.

Study of Naturally Occurring Radioactive Material Present in Deep Soil of the Malwa Region of Punjab State of India Using Low Level Background Gamma-Ray Spectrometry

  • Srivastava, Alok;Chahar, Vikash;Chauhan, Neeraj;Krupp, Dominik;Scherer, Ulrich W.
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.16-21
    • /
    • 2022
  • Background: Epidemiological observations such as mental retardation, physical deformities, etc., in children besides different types of cancer in the adult population of the Malwa region have been reported. The present study is designed to get insight into the role of naturally occurring radioactive material (NORM) in causing detrimental health effects observed in the general population of this region. Materials and Methods: Deep soil samples were collected from different locations in the Malwa region. Their activity concentrations were determined using low-level background gammaray spectrometry. High efficiency and high purity germanium detector capped in a lead-shielded chamber having a resolution of 1.8 keV at 1,173 keV and 2.0 keV at the 1,332 keV line of 60Co was used in the present work. Data were evaluated with Genie-2000 software. Results and Discussion: Mean activity concentrations of 238U, 232Th, and 40K in deep soil were found to be 101.3 Bq/kg, 65.8 Bq/kg, and 688.6 Bq/kg, respectively. The mean activity concentration of 238U was found to be three and half times higher than the global average prescribed by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). It was further observed that the activity concentration of 232Th and 40K has a magnitude that is nearly one and half times higher than the global average prescribed by UNSCEAR. In addition, the radioisotope 137Cs which is likely to have its origin in radiation fallout was also observed. It is postulated that the NORM present in high quantity in deep soil somehow get mobilized into the water aquifers used by the general population and thereby causing harmful health problems. Conclusion: It can be stated that the present work has been able to demonstrate the use of low background gamma-ray spectrometry to understand the role of NORM in causing health-related effects in a general population of the Malwa region of Punjab, India.

The role of natural rock filler in optimizing the radiation protection capacity of the intermediate-level radioactive waste containers

  • Tashlykov, O.L.;Alqahtani, M.S.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3849-3854
    • /
    • 2022
  • The present work aims to optimize the radiation protection efficiency for ion-selective containers used in the liquid treatment for the nuclear power plant (NPP) cooling cycle. Some naturally occurring rocks were examined as filler materials to reduce absorbed dose and equivalent dos received from the radioactive waste container. Thus, the absorbed dose and equivalent dose were simulated at a distance of 1 m from the surface of the radioactive waste container using the Monte Carlo simulation. Both absorbed dose and equivalent dose rate are reduced by raising the filler thickness. The total absorbed dose is reduced from 7.66E-20 to 1.03E-20 Gy, and the equivalent dose is rate reduced from 183.81 to 24.63 µSv/h, raising the filler thickness between 0 and 17 cm, respectively. Also, the filler type significantly affects the equivalent dose rate, where the redorded equivalent dose rates are 24.63, 24.08, 27.63, 33.80, and 36.08 µSv/h for natural rocks basalt-1, basalt-2, basalt-sill, limestone, and rhyolite, respectively. The mentioned results show that the natural rocks, especially a thicker thickness (i.e., 17 cm thickness) of natural rocks basalt-1 and basalt-2, significantly reduce the gamma emissions from the radioactive wastes inside the modified container. Moreover, using an outer cementation concrete wall of 15 cm causes an additional decrease in the equivalent dose rate received from the container where the equivalent dose rate dropped to 6.63 µSv/h.

Method development for quantitative analysis of naturally occurring radioactive nuclides in building materials (실내 건축자재 중 천연방사성핵종의 정량분석법 연구)

  • Lim, Jong-Myoung;Lee, Hoon;Kim, Chang-Jong;Jang, Mee;Park, Ji-Young;Chung, Kun Ho
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.252-261
    • /
    • 2017
  • Naturally occurring radioactive materials (NORMs) increase radiation exposure to the public as these materials are concentrated through artificial manufacturing processes by human activities. This study focuses on the development of a method for the quantitative analysis of $^{232}Th$, $^{235}U$, and $^{238}U$ in building materials. The accuracy and precision of inductively coupled plasma mass spectrometry (ICP-MS) for determination of digestion processes was evaluated for certified reference materials (CRMs) digested using various mixed acid (e.g., aqua regia, hydrofluoric acid, and perchloric acid) digestions and a $LiBO_2$ fusion method. The method validation results reveal that a $LiBO_2$ fusion and $Fe(OH)_3$ co-precipitation should be applied as the optimal sample digestion process for the quantitative analysis of radionuclides in building materials. The radioactivity of $^{232}Th$, $^{235}U$, and $^{238}U$ in a total of 51 building material (e.g., board, brick, cement, paint, tile, and wall paper) samples was quantitatively analyzed using an established process. Finally, the values of $^{238}U$ and $^{232}Th$ radioactivity were comprehensively compared with those from the indirect method using ${\gamma}$-spectrometry.

Occurrence Characteristics of Uranium and Radon-222 in Groundwater at ○○ Village, Yongin Area (용인 ○○마을 지하수내 우라늄 및 라돈-222의 산출특성)

  • Jeong, Chan Ho;Yang, Jae Ha;Lee, Yong Cheon;Lee, Yu Jin;Cho, Hyeon Young;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.261-276
    • /
    • 2016
  • The occurrence of natural radioactive materials such as uranium and radon-222 in groundwater was examined with hydrogeochemistry and geology at ○○ village in the Yongin area. Two rounds of 19 groundwater and 5 surface water sampling were collected for analysis. The range of pH value in groundwaters was 5.81 to 7.79 and the geochemical types of the groundwater were mostly Ca(Na)-HCO3 and Ca(Na)-NO3(Cl)-HCO3. Uranium and radon-222 concentrations in the groundwater ranged from 0.06 to 411 μg/L and from 5.56 to 903 Bq/L, respectively. Two deep groundwaters used as common potable well-water sources exceeded the maximum contaminant levels of the uranium and radon-222 proposed by the United States Environmental Protection Agency (US EPA). Three groundwater samples from residential areas contained unsuitable levels of uranium, and 12 groundwater samples were unsuitable due to radon-222 concentrations. Radioactive materials in the unsuitable groundwater are naturally occurring in a Jurassic amphibole- and biotite-bearing granitic gneiss. High uranium and radon-222 groundwater concentrations were only observed in two common wells; the others showed no relationship between bedrock geology and groundwater geochemical constituents. With such high concentrations of naturally occurring radioactive materials in groundwater, the affected areas may extend tens of meters for uranium and even farther for radon-222. Therefore, we suggest the radon-222 and the uranium did not originate from the same source. Based on the distribution of radon-222 in the study area, zones of higher radon-222 concentrations may be the result of diffusion through cracks, joint, or faults. Surface radioactivity and uranium concentrations in the groundwater show a positive relationship, and the impact areas may extend for ~200m beyond the well in the case of wells containing high concentrations of uranium. The highest uranium and thorium concentrations in rock samples were detected in thorite and monazite.

Investigation on Natural Radioactivity of Environmental Samples Near the Bauxite Processing Facility (보오크사이트 사용업체 주변 환경시료의 자연방사능 조사)

  • Moon, Dong-Hyeok;Koh, Sang-Mo;Chang, Byung-Uck;Kim, Tong-Kwon;Kim, Yong-Ug
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.347-356
    • /
    • 2010
  • Bauxite is a main raw material for the production of alumina and aluminum hydroxide in the processing plant of KC company. It is a NORM (Naturally Occurring Radioactive Materials), and its waste, red mud, is a TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials). The purpose of the geochemical and mineralogical investigations of the bedrock and soils in and around the plant, a large NORM source, was to provide basic data for measuring the radiation dose and protecting from radioactive hazards. Soils were mixtures of minerals derived from the country rock (quartz, feldspar, mica, kaolin, gibbsite, and sepiolite) and bauxite (hematite, boehmite, and calcite) of open-air storage. Average U and Th contents of the soil samples were 4.7 ppm and 23 ppm, respectively, indicating somewhat Th anomaly. The average concentrations of radionuclides are $^{40}K$ 100~1,433 Bq/kg, $^{226}Ra$ anomaly in the red mud open-air storage. Soil external hazard indices range from 0.10 to 1.66 with an average of 0.63. Although most of the indices are below 1.0 that is a regulation value, those of 4 samples of total 41 soil samples exceed 1.0, requiring further detailed investigation.

Development of a Methodology for Estimating Radioactivity Concentration of NORM Scale in Scrap Pipes Based on MCNP Simulation

  • Wanook Ji;Yoomi Choi;Zu-Hee Woo;Young-Yong Ji
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.481-487
    • /
    • 2023
  • Concerning the apprehensions about naturally occurring radioactive materials (NORM) residues, the International Atomic Energy Agency (IAEA) and its member nations have acknowledged the imperative to ensure the radiation safety of NORM industries. Residues with elevated radioactivity concentrations are predominantly produced during NORM processing, in the form of scale and sludge, referred to as technically enhanced NORM (TENORM). Substantial quantities of TENORM residues have been released externally due to the dismantling of NORM processing factories. These residues become concentrated and fixed in scale inside scrap pipes. To assess the radioactivity of scales in pipes of various shapes, a Monte Carlo simulation was employed to determine dose rates corresponding to the action level in TENORM regulations for different pipe diameters and thicknesses. Onsite gamma spectrometry was conducted on a scrap iron pipe from the titanium dioxide manufacturing factory. The measured dose rate on the pipe enabled the estimation of NORM concentration in the pipe scale onsite. The derived action level in dose rate can be applied in the NORM regulation procedure for on-site judgments.