Browse > Article
http://dx.doi.org/10.5806/AST.2017.30.5.252

Method development for quantitative analysis of naturally occurring radioactive nuclides in building materials  

Lim, Jong-Myoung (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Lee, Hoon (Radiation Safety Division, Korea Foundation Of Nuclear Safety)
Kim, Chang-Jong (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Jang, Mee (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Park, Ji-Young (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Chung, Kun Ho (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Publication Information
Analytical Science and Technology / v.30, no.5, 2017 , pp. 252-261 More about this Journal
Abstract
Naturally occurring radioactive materials (NORMs) increase radiation exposure to the public as these materials are concentrated through artificial manufacturing processes by human activities. This study focuses on the development of a method for the quantitative analysis of $^{232}Th$, $^{235}U$, and $^{238}U$ in building materials. The accuracy and precision of inductively coupled plasma mass spectrometry (ICP-MS) for determination of digestion processes was evaluated for certified reference materials (CRMs) digested using various mixed acid (e.g., aqua regia, hydrofluoric acid, and perchloric acid) digestions and a $LiBO_2$ fusion method. The method validation results reveal that a $LiBO_2$ fusion and $Fe(OH)_3$ co-precipitation should be applied as the optimal sample digestion process for the quantitative analysis of radionuclides in building materials. The radioactivity of $^{232}Th$, $^{235}U$, and $^{238}U$ in a total of 51 building material (e.g., board, brick, cement, paint, tile, and wall paper) samples was quantitatively analyzed using an established process. Finally, the values of $^{238}U$ and $^{232}Th$ radioactivity were comprehensively compared with those from the indirect method using ${\gamma}$-spectrometry.
Keywords
NORM; Alkali fusion; ICP-MS; Building material; $^{238}U$; $^{232}Th$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. S. Paschoa, Appl. Radiat. Isot., 49, 189-196 (1998).   DOI
2 International Commission on Radiological Protection. 'The 2007 Recommendations of the International Commission on Radiological Protection', ICRP Publication 103, 2007.
3 Q. H. Hu, J. Q. Weng and J. S. Wang, J. Environ. Radioact., 101, 426-437 (2010).   DOI
4 M. Mola, M. Palomo, A. Penalvear, C. Aguilar and F. Borrull, J. Hazard. Mater., 198, 57-64 (2011).   DOI
5 F. S. Al-Saleh and G. A. Al-Harshan, J. Environ. Radioact., 99, 1026-1031 (2008).   DOI
6 N. Ibrahim, J. Environ. Radioact., 43, 255-258 (1999).   DOI
7 A. Kumar, M. Kumar, B. Singh and S. Singh, Radiation Measurements, 36, 465-469 (2003).   DOI
8 D. Amrania and M. Tahtatb, Appl. Radiat. Isot., 54, 687-689 (2001).   DOI
9 Y. H. Cho, C. J. Kim, J. Y. Yun, D. H. Cho and K. P. Kim, J. Radiat. Prot., 3, 181-190 (2012).
10 S. N. dos Santos and L. R. F. Alleoni, Water Air Soil Pollut., 224, 1430-1445 (2013).   DOI
11 M. Chen and L. Q. Ma, Soil Sci. Soc. Am. J., 65, 491-499 (2001).   DOI
12 Z. Hseu, Z. Chen, C. Tsai, C. Tsui, S. Cheng, C. Liu and H. Lin, Water, air, and Soil Pollut., 141, 189-205 (2002).   DOI
13 J. Janda, P. Sladek and D. Sas, J. Radioanal. Nucl. Chem., 293, 223-229 (2012).   DOI
14 J. Mantero, M. Lehritane, S. Hurtado and R. Garcia-Tenorio, J. Radioana. Nucl. Chem., 286, 557-563 (2010).   DOI
15 J. K. Haken, Ind. Eng. Chem. Prod. Res., 25, 163-171 (1986).   DOI
16 H. E. Carter, P. Warwick, J. Cobbb and G. Longworth, Analyst, 124, 271-274 (1999).   DOI
17 C. J. Brookes, I. G. Betteley and S. M. Loxton, 'Fundamentals of Mathematics and Statistics, Wiley, 1979.
18 M. Seferinoglu, A. Dirican, P. E. Erden and D. Ericin, Appl. Radiat. Isot., 94, 355-362 (2014).   DOI
19 International Atomic Energy Agency, 'Extent of Environmental Contamination by naturally occurring radioactive material (NORM) and technological options for mitigation', Tech report 419, 2003.
20 N. M. Hassan, T. Ishikawa, M. Hosoda, A. Sorimachi, S. Tokonami, Ma. Fukushi and S. K. Sahoo, J. Radioanal. Nucl. Chem., 283, 15-21 (2009).
21 Y. Y. Ji, K. H. Jung, J. M. Lim, C. J. Kim, M. Jang, M. J. Kang, S. T. Park, Z. H. Woo, B. C. Koo and B. K. Seo, J. Nucl. Fuel Cycle Waste Techno., 12, 97-105 (2014).   DOI
22 J. Y. Park, J. M. Lim, Y. Y. Ji, C. S. Lim, B. U. Jang, K. H. Chung, W. Lee and M. J. Kang, J. Radiat. Prot. Res., 41(4), 359-367 (2017).   DOI
23 International Atomic Energy Agency, 'Extent of environmental contamination by Naturally Occurring Radioactive Material (NORM) and technological options for mitigation', 2003.