• Title/Summary/Keyword: Natural working fluid

Search Result 62, Processing Time 0.023 seconds

A Study on Heat Transfer Characteristics of the Outside Surface of Ambient Vaporizer (액화가스용 대기식 기화기의 외측 열전달 특성에 관한 연구)

  • Kang, Seung Mo;Seo, Dongmin;Ko, Dong Guk;Choi, Jun-Ho;Park, Woe-Chul;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.5-10
    • /
    • 2017
  • This paper analyzed the heat transfer characteristics on the outer surface of the ambient air vaporizer which received the heat from the air through natural convection by using numerical and experimental methods. The working fluid was a liquid nitrogen. The experimental variables were the length (2,000 mm, 1,800 mm, 1,600 mm) and width of the vaporizer fin and the fluid flow ($6.7m^3/h$, $7.1m^3/h$, $7.5m^3/h$). Based on the temperature data from the experiments, the heat transfer coefficient was calculated. Numerical analyses were also conducted in order to find the heat transfer coefficient for the range of Nusselt number which was difficult to get the data from experiments. The correlation equation between Nusselt number and Rayleigh number were suggested using both the experimental and numerical data.

  • PDF

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

Thermodynamic Analysis of Power Generation Cycle Utilizing LNG Cold Energy (LNG 냉열을 이용하는 동력사이클 열역학 해석)

  • 최권일;장홍일
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.48-55
    • /
    • 1999
  • thermodynamic cycle analysis has been performed for the power generation systems to utilize the cold energy of liquefied natural gas (LNG). The power cycle used the air or water at room temperature as a heat source and the LNG at cryogenic temperature as a heat sink. Among manypossible configurations of the cycle. the open Rankine cycle. and the closed Brayton cycle, and the closed Rankine cycle are selected for the basic analysis because of their practical importance. The power output per unit mass of LNG has been analytically calculated for various design parameters such as the pressure ratio. the mass flow rate. the adiabatic efficiency. the heat exchanger effectiveness. or the working fluid. The optimal conditions for the parameters are presented to maximize the power output and the design considerations are discussed. It is concluded that the open Rankine cycle is the most recormmendable both in thermodynamic efficency and in practice.

  • PDF

Effects of Working Fluids on the Performance Characteristics of Organic Rankine Cycle (ORC) Using LNG Cold Energy as Heat Sink (LNG 냉열을 열싱크로 이용하는 유기랭킨사이클(ORC)의 작동유체에 따른 성능 특성)

  • Kim, Kyoung Hoon;Ha, Jong Man;Kim, Kyung Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.200-208
    • /
    • 2014
  • This paper presents thermodynamic performance analysis of organic Rankine cycle (ORC) using low temperature heat source in the form of sensible energy and using liquefied natural gas (LNG) as heat sink to recover the cryogenic energy of LNG. LNG is able to condense the working fluid at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the mathematical model, a parametric analysis is conducted to examine the effects of eight different working fluids, the turbine inlet pressure and the condensation temperature on the system performance. The results indicate that the thermodynamic performance of ORC such as net work production or thermal efficiency can be significantly improved by the LNG cold energy.

Examination on Autonomous Recovery Algorithm of Piping System (배관 체계 자율 복구 알고리즘 비교, 분석 및 고찰)

  • Yang, Dae Won;Lee, Jeung-hoon;Shin, Yun-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • Piping systems comprising pumps and valves are essential in the power plant, oil, and defense industry. Their purpose includes a stable supply of the working fluid or ensuring the target system's safe operation. However, piping system accidents due to leakage of toxic substances, explosions, and natural disasters are prevalent In addition, with the limited maintenance personnel, it becomes difficult to detect, isolate, and reconfigure the damage of the piping system and recover the unaffected area. An autonomous recovery piping system can play a vital role under such circumstances. The autonomous recovery algorithms for the piping system can be divided into low-pressure control algorithms, hydraulic resistance control algorithms, and flow inventory control algorithms. All three methods include autonomous opening/closing logic to isolate damaged areas and recovery the unaffected area of piping systems. However, because each algorithm has its strength and weakness, appropriate application considering the overall design, vital components, and operating conditions is crucial. In this regard, preliminary research on algorithm's working principle, its design procedures, and expected damage scenarios should be accomplished. This study examines the characteristics of algorithms, the design procedure, and working logic. Advantages and disadvantages are also analyzed through simulation results for a simplified piping system.

Experimental Investigation of Flow Oscillations in a Semi-closed Two-phase Natural Circulation Loop (준밀폐형 2상자연순환 회로 내에서의 유동 진동에 관한 실험적 연구)

  • Kim, Jong Moon;Lee, Sang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1763-1773
    • /
    • 1998
  • In the present experimental study, the flow behavior in a semi-closed two-phase natural circulation loop was examined. Water was used as the working fluid. Heat flux, heater-inlet subcooling, and flow restrictions at the heater-inlet and at the expansion-tank-line were taken as the controlling parameters Six circulation modes were identified by changing heat flux and inlet subcooling conditions ; single-phase continuous circulation, periodic circulation (A), two-phase continuous circulation, and periodic circulations (B), (C), and (D). Among these, the single-phase and two-phase continuous-circulation modes exhibit no significant oscillations and are considered to be stable. Periodic circulation (A) is characterized by the large amplitude two-phase f10w oscillations with the temporal single-phase circulation between them, while periodic circulation (B) featured by the flow oscillations with continuous boiling inside the heater section. Periodic circulation (C) appears to be the manometric oscillation with continuous boiling. Periodic circulation (D) has the longer period than periodic circulation (B) and a substantial amount of liquid flow back and forth through the expansion-tank-line periodically ; this mode is considered the pressure drop oscillation. Parametric study shows that the increases of the inlet- and expansion-tank-line- restrictions and the decrease of inlet subcooling broaden the range of the stable two-phase(continuous circulation) mode.

Development and evaluation of continuing education course in renal nutrition

  • Karavetian, Mirey;Rizk, Rana
    • Nutrition Research and Practice
    • /
    • v.10 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • BACKGROUND/OBJECTIVE: Competent renal dietitians are crucial for better patient compliance and clinical outcomes, specifically in critical settings. The aim of this study was to develop and evaluate an evidence-based course in renal dietetics for dietitians working in health care systems where dietetic specialization is absent. SUBJECTS/METHODS: Fifteen licensed dietitians working with hemodialysis patients in Lebanon were randomly recruited to participate in the course. The latter was developed by the study's primary investigator, according to evidence-based practice guidelines, and focused on all aspects of renal nutrition. Total course duration was 28 hours spread over a 2 month period. Dietitians' knowledge in renal nutrition was tested pre- and post-training through a 23-item questionnaire; the total score was expressed in percentage (< 60% score indicated insufficient knowledge). Paired-samples t test was used for statistical analysis. RESULTS: Overall knowledge of the dietitians significantly improved post-training and reached satisfactory levels (pre: $38.75{\pm}17.20%$, post: $62.08{\pm}21.85%$). Sub-analysis of the change in the knowledge showed significant and satisfactory improvement only in 3 topics: 1) correct body weight use in calculations, 2) energy estimation method and 3) phosphorus management. Knowledge in the fluid management significantly improved but did not achieve a satisfactory level. CONCLUSION: The course significantly improved dietitians' knowledge in renal nutrition. If adopted as part of the continuing education of dietitians in countries that lack dietetic specializations, it may serve the first step towards improving health care practice.

A study on the mechanical performance of impregnated polymer foam in cargo leakage of LNG carrier (LNG운반선의 화물 누출 시 함침된 고분자 폼의 기계적 성능에 관한 연구)

  • Park, Gi-Beom;Kim, Tae-Wook;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.345-352
    • /
    • 2017
  • In this study, the effect of cryogenic liquefied natural gas leakage and loading on liquefied natural gas cargo hold is investigated to observe the performance of the polymer foam material that comprises the cryogenic insulation of the cargo hold. The primary barriers of liquefied natural gas carrier that are in contact with the liquefied natural gas will leak if damage is accumulated, owing to fluid impact loads or liquefied natural gas loading / unloading over a long period. The leakage of the cryogenic fluid affects the interior of the polymer foam, which is a porous closed cell structure, and causes a change in behavior with respect to the working load. In this study, mechanical properties of polyisocyanurate foam specimen, which is a polymer material used as insulation, are evaluated. The performance of the specimens, owing to the cold brittleness and the impregnation effects of the cryogenic fluids, are quantitatively compared and analyzed.

Thermodynamic Performance Analysis of Ammonia-Water Rankine Cycle and Organic Rankine Cycle Using Cold Energy of LNG (LNG 냉열을 이용하는 암모니아-물 랭킨 사이클과 유기 랭킨 사이클의 열역학적 성능 특성 해석)

  • KIM, KYOUNG HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.363-371
    • /
    • 2020
  • Recently, the technologies to utilize the cold energy of liquefied natural gas (LNG) have attracted significant attention. In this paper, thermodynamic performance analysis of combined cycles consisting of ammonia Rankine cycle (AWR) and organic Rankine cycle (ORC) with LNG Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the effects of the important system parameters such as turbine inlet pressure, ammonia mass fraction, working fluid on the system performance are systematically investigated. The results show that the thermal efficiency of AWR-LNG cycle is higher but the total power production of ORC-LNG cycle is higher.

Study of Stirling Cryocooler Performance with Different Operating Frequency (작동주파수에 따른 스터링 극저온 냉동기의 특성에 관한 연구)

  • 박성제;홍용주;고득용;김효봉;오군섭;김종학
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.159-162
    • /
    • 2001
  • A Stirling cryocooler is relatively compact, reliable, commercially available, and uses helium as a working fluid. The FPFD stirling cryocooler consists of two compressor pistons driven by linear motors which makes pressure waves and a pneumatically driven displacer piston with regenerator. It is the most suitable design for a mechanical cryocooler utilized in night vision environment. In order to get optimum operating frequency, natural frequency of piston and displacer, optimum phase angle between piston and displacer, cooling capacity, performance tests of the Stirling cryocooler by the frequency characteristics were performed.

  • PDF