• Title/Summary/Keyword: Natural vibration analysis

Search Result 1,935, Processing Time 0.023 seconds

Comparison of the Natural Period Obtained by Eigenvalue Analysis and Ambient Vibration Measurement in Bearing-Wall Type Apartment (고유치해석과 진동계측을 통한 벽식 공동주택의 고유주기 비교)

  • Yoon, Sung-Won;Jeong, Sug-Chang;Lim, In-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.43-50
    • /
    • 2006
  • This paper is concerned with the natural periods of ambient vibration and eigenvalue analysis. Ambient vibration tests were conducted to four bearing-wall reinforced concrete buildings ranging from twelve to nineteen stories. The performance of modeling in eigenvalue analysis was investigated using consideration of rigidity out of the plane in the slab and the non-structural bearing wall. Measured natural period was also compared with the value by the KBC2005. Natural period of the short direction in eigenvalue analysis is well fitted with the measured one. In the other hand, Natural period of the long direction in eigenvalue analysis is slightly more overestimated than the measured one. Natural period of the long direction in eigenvalue analysis was found to be enhanced by considering the effect of the stiffness out of the plane of the slab and non-structural wall in the structural modeling.

  • PDF

Analysis of Vibration Characteristics of Fuel Pipe and Test Jig for Vehicle (차량 연료공급용 파이프 및 시험용 지그의 진동특성 해석)

  • Son, In-Soo;Kim, Myung-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.315-321
    • /
    • 2021
  • In this study, the natural frequency analysis of the fuel pipe and vibration test jig was performed as a basic study to determine the vibration characteristics of the vehicle's fuel pipe and the stability analysis of fatigue failure of the pipe. The natural frequencies of the fuel pipe and the fuel pipe with the test jig were calculated and the results were compared. As a result of the analysis, it was found that the natural frequency of the fuel pipe and the natural frequency of the test jig differed about 7 times, so that the vibration of the test jig did not affect the vibration of the fuel pipe. In addition, as a result of the natural frequency analysis of the fuel pipe itself and the pipe with the test jig attached, the maximum error is less than about 1%. In the future, it was suggested that the analysis of the design changed fuel pipe may be performed without a test jig.

Structural Analysis of Sinusoidal Vibration Load for Liquid Rocket Engine System (액체로켓엔진 시스템 정현파 진동 구조해석)

  • Chung, Yong-hyun;Lee, Eun-seok;Park, Soon-young;Yang, Chang-hwan;Jung, Jin-taeg
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.20-23
    • /
    • 2009
  • The structural analysis of liquid rocket engine was performed in the case of sinusoidal vibration load to verify structural safety. The finite element model is composed with main liquid rocket engine components, combustion chamber, turbopump, gas-generator, pyro-starter, main pipes, main valve, heat-exchanger, gimbal-mount and brackets. Natural vibration mode analysis and structural analysis for sinusoidal vibration load were performed. The natural mode frequency of liquid rocket engine is twice than that of launch vehicle. In the case of stress result of sinusoidal vibration load, the part of maximum stress has 1.4 margin, so the engine structure is safe for sinusoidal vibration load.

  • PDF

Vibration Characteristics of Piezoelectric Stack Transducers (적층 압전 변환기의 진동 특성)

  • Kim, Dae Jong;Kim, Jin Oh
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.66-68
    • /
    • 2014
  • The paper deals with the vibration characteristics of the stack transducers made of piezoelectric discs with different radius. Natural frequencies of the stack transducers were evaluated by finite-element analysis. The natural frequencies of the analysis results were compared with those of each piezoelectric disc, and their relations were investigated.

  • PDF

The Effects of Different Cross Section on Natural Frequency of the Advanced Composite Materials Road Structures (복합신소재 도로구조물의 변환단면이 고유진동수에 미치는 영향)

  • Han, Bong Koo
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.23-29
    • /
    • 2013
  • PURPOSES: This paper aims to give a guideline and the way to apply the advanced composite materials theory to the road structures with different cross sections to the practicing engineers. METHODS: To simple but exact method of calculating natural frequencies corresponding to the modes of vibration of road structures with different cross sections and arbitrary boundary conditions. The effect of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. RESULTS: Simple method of vibration analysis for calculating the natural frequency of the different cross sections is presented. CONCLUSIONS: Simple method of vibration analysis for calculating the natural frequency of the different cross sections is presented. This method is a simple but exact method of calculating natural frequencies of the road structures with different cross sections. This method is extended to be applied to two dimensional problems including composite laminated road structures.

Noise and Vibration Characteristics of Concrete Floor Structures Using Resilient Materials Driven by Standard Heavy Impact Source (완충재 유무에 따른 표준중량충격원에 의한 콘크리트 바닥 구조의 소음 및 진동 특성)

  • 송희수;전진용;서상호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.661-667
    • /
    • 2004
  • The characteristics of noise and vibration by a heavy impact source was studied. The triggering method was used for increasing the reliability and stability to measure the level of sound pressure. sound intensity and vibration acceleration. A simple finite element model and a rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The results show that the resilient materials decrease the natural frequency of the reinforced concrete slab, make a resonance with dominant driving frequency in the low frequency region, and increase the vibration and noise level. A simple finite element model and rigid body models was suggested to calculate the natural frequencies of the floor systems.

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF

Vibration Characteristics of Stacked Piezoelectric Transducers (적층 압전 변환기의 진동 특성)

  • Kim, Dae Jong;Kim, Jin Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.199-206
    • /
    • 2015
  • This paper deals with the vibration characteristics of stacked transducers composed of piezoelectric discs, which are main elements of ultrasonic sensors or actuators. The stacked transducers were devised in the sense of natural frequencies. Two- or three-layer transducers were fabricated with piezoelectric discs of different diameters. The natural frequencies were determined by the finite element analysis and they were verified by comparing them with experimental results. It appeared that the natural frequencies of the stacked piezoelectric transducers include the natural frequencies of the constituent piezoelectric discs and the natural frequencies caused by stacking. Based on these results, it would be possible to predict the vibration characteristics of the stacked piezoelectric transducers in a design process.

Development of NDIF Method for Highly Accurate Free Vibration Analysis of Arbitrarily Shaped Plates with Simply Supported Boundary Condition (단순 지지 경계 조건을 가진 임의 형상 평판의 고정밀도 자유 진동 해석을 위한 NDIF법 개발)

  • Kang, Sang-Wook;Woo, Yoon-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.186-193
    • /
    • 2011
  • The NDIF method(non-dimensional dynamic influence function method) for free vibration analysis of arbitrarily shaped plates with the simply supported edge is newly developed in the paper. In order to extract the system matrix that gives the natural frequencies and natural modes of the plate of interest, the difficulty of measuring higher differential terms involved in the simply supported boundary condition is successfully overcome. Finally, the excellence of the characteristics of convergence and accuracy of the proposed method is shown through two verification examples, which indicate that natural frequencies and natural modes obtained by the proposed method are very accurate and swiftly converged even though a small number of nodes are used compared with FEM.