• Title/Summary/Keyword: Natural preservative

Search Result 196, Processing Time 0.024 seconds

Environmental Monitoring of Heavy Metals and Arsenic in Soils Adjacent to CCA-Treated Wood Structures in Gangwon Province, South Korea

  • Abdelhafez, Ahmed A.;Awad, Yasser M.;Kim, Min-Su;Ham, Kwang-Joon;Lim, Kyoung-Jae;Joo, Jin-Ho;Yang, Jae-E.;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.340-346
    • /
    • 2009
  • Chromated copper arsenate (CCA) is a chemical wood preservative that has been intensively used to protect wood from decay during the last few decades. CCA is widely used to build structures such as decks, fences, playgrounds and boardwalks. However, structures constructed of CCA-treated wood have caused adverse environmental effects due to leaching of Cr, Cu and As into surrounding soils. This research was conducted to monitor the vertical and horizontal distribution of Cr, Cu and As in soils adjacent to CCA-treated wood structures in Korea. Two structures constructed with CCA-treated wood were selected at Hongcheon and Chuncheon in Gangwon Province, South Korea. Eleven soil profile samples were collected at depths of 0 to 80 cm at each site, while 12 surface soil samples were collected at distances of 0 to 200 cm from each structure. The soil chemical properties, soil particle size distribution and total metal concentrations were then determined. The results revealed that soils near CCA-treated wood structures were generally contaminated with Cr, Cu and As when compared to the background concentration of each metal. In addition, the concentrations of Cr, Cu and As in soils decreased as the vertical and horizontal distance from the structure increased. Further studies should be conducted to evaluate the mobility and distribution of these metals in the environment as well as to develop novel technologies for remediation of CCA contaminated soils.

Screening of Antimicrobial activity of the Plantain (Plantago asiatica L.) extract (질경이(Plantago asiatica L.) 추출물의 항균성검색)

  • 전영옥;김건희;김순임;한영실
    • Korean journal of food and cookery science
    • /
    • v.14 no.5
    • /
    • pp.498-502
    • /
    • 1998
  • In order to develop a natural food preservative, freeze dried plantain (Plantago asiatica L.) was extracted with several solvents, and the antimicrobial activity was investigated. The methanol extract exhibited antimicrobial activites against five strains of bacteria such as Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus. The methanol extract at the concentration of 1.0 mg/ml completely inhibited the growth of B. subtilis and V. parahaemolyticus. Antimicrobial activity of the ethylacetate fraction from the methanol extract was the strongest compared with those of other solvent fractions such as n-hexane, chloroform, n-butanol and water. The ethylacetate fraction showed the inhibitory effect at the concentration of 0.5 mg/disc on the growth of B. subtilis and V. parahaemolyticus.

  • PDF

Effect of Dandelion on the Extention of Shelf-life of Noodle and Rice Cake (민들레 첨가가 국수와 떡의 저장성 향상에 미치는 영향)

  • 김건희;전희정;한영실
    • Korean journal of food and cookery science
    • /
    • v.15 no.2
    • /
    • pp.121-126
    • /
    • 1999
  • In order to develop a natural food preservative, freeze-dried dandelion (Taraxacum platycarpum D.) was extracted with 99.5% (v/v) methanol, and its antimicrobial activity was investigated. The methanol extract at the concentration of 2,000 $\mu\textrm{g}$/ml completely inhibited the growth of S. aureus. When the solutions of dandelion at 1%, 3% and 5% were added to noodles and rice cakes, less microbial growth was observed compared with the control roup. For the noodles, the 3%-added group was the most superior in terms of color and moistness, and the 1%-added group gained the highest grade in terms of chewiness and overall quality. For rice cakes, the 3%-added group was evaluated to be the favorite.

  • PDF

Isolation and Characterization of Bioactive Compounds from Root of Rubus coreanus Miquel and their Antimicrobial Activity

  • Jang, Ha Na;Ha, Ji Hoon;Lee, Yoon Ju;Fu, Min Min;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.54-63
    • /
    • 2019
  • Rubus coreanus Miquel (RCM), also known as Korean blackberry or bokbunja, is used as a South Korean traditional medicine to treat acne and inflammatory skin conditions. The antimicrobial activity of RCM root and its active compounds remain unclear. In this study, we prepared a 50% ethanol fraction, ethyl acetate fraction, and acid-treated ethyl acetate fraction (aglycone fraction) of RCM root, and evaluated antibacterial activities against the skin pathogens Staphylococcus aureus, Pseudomonas acnes, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. In a paper disc assay, all fractions of RCM root showed antimicrobial activities against the five skin pathogens. The ethyl acetate fraction displayed 6-, 12-, and 2-fold higher minimal inhibitory concentration (MIC) than the 50% ethanol fraction against S. aureus, E. coli, and P. acnes, respectively. The aglycone fraction displayed 2-fold higher MIC than methyl paraben against P. acnes, S. aureus, E. coli, and P. aeruginosa. The ethyl acetate fraction displayed a minimal bactericidal concentration (MBC) similar to that of methyl paraben, and the aglycone fraction showed 2- to 4-fold higher MBCs than those of methyl paraben. In particular, the ethyl acetate fraction was not cytotoxic and showed thermal stability after incubation at high temperatures ($60-121^{\circ}C$). Finally, the ethyl acetate fraction was separated and four components were identified: procyanidin C, propelagonidin dimer, ellagic acid, and methyl ellagic acid acetyl pentose. The compounds showed high antibacterial activities. These results suggest that RCM root is potentially applicable as a natural preservative in cosmetics.

Antimicrobial Activity of Pectin hydrolysate and its Preservative Effect (펙틴분해물의 항균특성과 식품보존효과)

  • 박미연;최승태;장동석
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.2
    • /
    • pp.99-105
    • /
    • 1998
  • Pectin hydrolysate prepared from citrus pectin by enzymatic hydrolysis has antimicrobial activity. The antimicrobial activity was increased by its hydrolyzing rate and it was rapidly increased after 70% hydrolysis of the pectin. The antibacterial activity of pectin hydrolysate against Escherichia coli ATCC 11229 was the strongest at pH 4.9~5.5, but it diminished slightly at neutral pH values. The antibacterial activity of pectin hydrolysate was stronger than those of against molds and yeasts. The growth of bacteria submitted to this test except lactics was completely inhibited for 48 hrs at $35^{\circ}C$ by adding 2.0~3.0% pectin hydrolysate. While the growth of Lactococcus lactis ATCC 19435 and Lactobacillus bulgaricus and Penicillium funiculosum ATCC 11797 were reached about 60~70% compared with those of the controls in the same condition. But there was no significant effect on the growth of the yeasts. The antibacterial effect of pectin hydrolysate was significantly stimulated by addition of glycine, ethanol, sodium ascorbate, sodium chloride and sodium acetate. The shelf life of Kimchi containing 1.0% pectin hydrolysate was prolonged above 15 days at $4^{\circ}C$ than that of its control. In case of whitish bean jam viable cell counts were inhibited about 2 log cycles by 10 days at $25^{\circ}C$. According to these results, author can sincerely suggest that pectin hydrolysate will be used as a natural food preservative for inhibition of common bacterial growth without inhibition of lactics and yeasts.

  • PDF

Risk Assessment of 5-Chloro-2-Methylisothiazol-3(2H)-One/2-Methylisothiazol-3(2H)-One (CMIT/MIT) Used as a Preservative in Cosmetics

  • Kim, Min Kook;Kim, Kyu-Bong;Lee, Joo Young;Kwack, Seung Jun;Kwon, Yong Chan;Kang, Ji Soo;Kim, Hyung Sik;Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.103-117
    • /
    • 2019
  • The mixture of 5-chloro-2-methylisothiazol-3(2H)-one (CMIT) and 2-methylisothiazol-3(2H)-one (MIT), CMIT/MIT, is a preservative in cosmetics. CMIT/MIT is a highly effective preservative; however, it is also a commonly known skin sensitizer. Therefore, in the present study, a risk assessment for safety management of CMIT/MIT was conducted on products containing 0.0015% of CMIT/MIT, which is the maximum MIT level allowed in current products. The no observed adverse effect level (NOAEL) for CMIT/MIT was 2.8 mg/kg bw/day obtained from a two-generation reproductive toxicity test, and the skin sensitization toxicity standard value for CMIT/MIT, or the no expected sensitization induction level (NESIL), was $1.25{\mu}g/cm^2/day$ in humans. According to a calculation of body exposure to cosmetics use, the systemic exposure dosage (SED) was calculated as 0.00423 mg/kg bw/day when leave-on and rinse-off products were considered. Additionally, the consumer exposure level (CEL) amounted to $0.77512{\mu}g/cm^2/day$ for all representative cosmetics and $0.00584{\mu}g/cm^2/day$ for rinse-off products only. As a result, the non-cancer margin of safety (MOS) was calculated as 633, and CMIT/MIT was determined to be safe when all representative cosmetics were evaluated. In addition, the skin sensitization acceptable exposure level (AEL)/CEL was calculated as 0.00538 for all representative cosmetics and 2.14225 for rinse-off products; thus, CMIT/MIT was considered a skin sensitizer when all representative cosmetics were evaluated. Current regulations indicate that CMIT/MIT can only be used at concentrations 0.0015% or less and is prohibited from use in other cosmetics products. According to the results of this risk assessment, the CMIT/MIT regulatory values currently used in cosmetics are evaluated as appropriate.

Natural Extracts as Inhibitors of Microorganisms and Lipid Oxidation in Emulsion Sausage during Storage

  • Lee, Jeeyeon;Sung, Jung-Min;Cho, Hyun Jin;Woo, Seung-Hye;Kang, Min-Cheol;Yong, Hae In;Kim, Tae-Kyung;Lee, Heeyoung;Choi, Yun-Sang
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.1060-1077
    • /
    • 2021
  • Food additives are required to maintain the freshness and quality of foods, particularly meats. However, chemical additives may not be preferred by consumers, and natural materials with antimicrobial and antioxidant effects may be used as replacements for common chemical additives. Accordingly, in this study, we compared the antimicrobial and antioxidant activities of natural compounds extracted with ethanol and hot water, and emulsion sausage prepared with natural ethanol extracts was analyzed for pH, color, thiobarbituric acid reactive substances (TBARS), and Clostridium perfringens growth during storage. The antimicrobial activities of 49 natural extract candidates against Listeria monocytogenes, C. perfringens, Salmonella spp., and Escherichia coli were analyzed, and six natural materials with excellent antibacterial activities, i.e., Elaeagnus umbellata Thunb. f. nakaiana (Araki) H. Ohba, Punica granatum L., Ecklonia cava, Nelumbo nucifera Gaertner, and Schisandra chinensis (Turcz.) Baill., and Rubus coreanus Miq. were evaluated to determine their total polyphenol contents and DPPH radical scavenging activities. The total polyphenol contents of ethanol extracts were higher than those of hot water extracts, whereas DPPH radical scavenging activity was found to be higher in hot water extracts. The TBARS values of emulsion sausages were significantly increased as storage time increased, and the TBARS values of emulsion sausages prepared with natural extracts were lower than those of control sausages. Natural extract-treated emulsion sausages showed a 99% reduction in bacterial contents compared with untreated sausages on day 2, with greater than 99.9% reduction after day 3. Thus, these results demonstrated that natural extracts could have applications as natural preservatives in meat products.

Inhibitory effect of natural extract mixtures on microbial growth and lipid oxidation of sausages during storage

  • Seung-Hye Woo;Jung-Min Sung;Heejin Park;Jake Kim;Yea-Ji Kim;Tae-Kyung Kim;Heeyoung Lee;Yun-Sang Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.225-243
    • /
    • 2023
  • Large amounts of additives are used during meat product processing to maintain product quality and shelf life. With the growing interest in healthy foods, natural plant-based additives are being used as alternatives to synthetic additives. In this study, six types of natural extracts with excellent antibacterial activity were selected, and their antibacterial and antioxidant activities against four types of pathogens were evaluated in various combinations. In addition, the pH, color, amount of thiobarbituric acid reactive substances (TBARS), and growth of pathogenic microorganisms were analyzed during the storage of sausages treated with various combinations of these extracts. The natural extract mixtures exhibited different antibacterial activities, depending on the combination. Compared to grapefruit seed extract, a mixture of natural extracts extracted with ethanol (M4) reduced the Escherichia coli content by more than 99.9% after 8 days of storage and slowed the growth of Listeria monocytogenes and Salmonella spp. by more than 80% after 14 days. Compared to untreated (NC) and grapefruit extract (PC)-treated sausages, sausages treated with the natural extract mixtures showed a significant decrease in CIE L* and an increase in CIE a* and CIE b* (p < 0.05). The pH value was significantly lower in sausages containing natural extract mixtures than in the NC and PC sausages (p < 0.05). The natural plant extract mixtures significantly prevented lipid oxidation (p < 0.05). In summary, different types of natural extract mixtures have a synergistic effect when used together, suggesting that natural preservatives can generally inhibit the growth of microorganisms and oxidation of processed meat.

Inhibitory Effects of Temperature, pH, and Potassium Sorbate against Natural Microflora in Strawberry Paste during Storage (저장중 온도, pH, potassium sorbate를 이용한 딸기 paste의 natural microflora의 증식억제 효과)

  • Cho, Joon-Il;Ha, Sang-Do;Kim, Keun-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.355-360
    • /
    • 2004
  • Residual contamination levels of natural microflora in strawberries were evaluated. Approximate counts of total aerobic mesophilic bacteria, total coliforms, and lactic acid bacteria were 8, 2, and 3 log CFU/g, respectively, whereas those of Escherichia coli and yeasts/molds were under the detection limit (<10 cells/g). Growth inhibition degrees of total aerobic mesophilic bacteria, total coliforms, and lactic acid bacteria were also evaluated based on three hurdles of preservative, storage temperature, and pH of strawberry paste prepared as model system. Strawberry paste was stored at low ($4^{\circ}C$), room ($20^{\circ}C$), and high ($37^{\circ}C$) temperatures. Potassium sorbate was added as a preservative up to 0.1%. Acidity of strawberry paste was adjusted to pH 4 or 7. During 7-day storage, inhibitory effects of the hurdles against bacterial groups were: storage temperature > pH of strawberry paste > addition of potassium sorbate. Combination of three hurdles most effectively inhibited growth of residual microflora.

Minimum Inhibitory Concentration (MIC) of Propionic Acid, Sorbic Acid, and Benzoic Acid against Food Spoilage Microorganisms in Animal Products to Use MIC as Threshold for Natural Preservative Production

  • Yeongeun Seo;Miseon Sung;Jeongeun Hwang;Yohan Yoon
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.319-330
    • /
    • 2023
  • Some preservatives are naturally contained in raw food materials, while in some cases may have been introduced in food by careless handling or fermentation. However, it is difficult to distinguish between intentionally added preservatives and the preservatives naturally produced in food. The objective of this study was to evaluate the minimum inhibitory concentration (MIC) of propionic acid, sorbic acid, and benzoic acid for inhibiting food spoilage microorganisms in animal products, which can be useful in determining if the preservatives are natural or not. The broth microdilution method was used to determine the MIC of preservatives for 57 microorganisms. Five bacteria that were the most sensitive to propionic acid, benzoic acid, and sorbic acid were inoculated in unprocessed and processed animal products. A hundred microliters of the preservatives were then spiked in samples. After storage, the cells were counted to determine the MIC of the preservatives. The MIC of the preservatives in animal products ranged from 100 to 1,500 ppm for propionic acid, from 100 to >1,500 ppm for benzoic acid, and from 100 to >1,200 ppm for sorbic acid. Thus, if the concentrations of preservatives are below the MIC, the preservatives may not be added intentionally. Therefore, the MIC result will be useful in determining if preservatives are added intentionally in food.