• Title/Summary/Keyword: Natural mode

Search Result 1,975, Processing Time 0.026 seconds

Investigation on Natural Modes of Substructure of Wave Energy Converter with Overtopping Flow Device (나선암초형 월류파력발전 하부구조물의 모드특성 연구)

  • Kim, Byoung-Wan;Shin, Seung-Ho;Hong, Key-Yong;Choi, You-Su;Seo, Jeong-Oh;Ahn, Ike-Jang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.323-330
    • /
    • 2010
  • An efficient wave energy converter with new overtopping flow device on which spiral reefs are attached is proposed by Maritime and Ocean Engineering Research Institute in Korea and its candidate substructures such as monopile, tripod and jacket are designed. This study investigates modal characteristics of the substructures by analyzing natural frequencies and mode shapes. Based on the modal analysis results, relative strength, governing modes and some complementary design strategies of each candidate substructure are compared and discussed considering water depth conditions.

A Study on the Natural Frequencies of the Sound Emitted by Thin Conical Shell (圓통形셸 의 音響調節 에 관한 實驗的 硏究)

  • 염영하;곽재경;정석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.353-360
    • /
    • 1982
  • The determination of the natural frequencies and mode shapes for thin conical shell is an important step not only in the investigation of the dynamic response of the composite structures such as missile cone, mose firings, but also in the analysis of the acoustic behavior of bells. A Rayleigh-Ritz procedure was used to determine the natural frequencies for a certain class of mode shapes of a thin conical shell built in on the edge with the smaller radius and free on the other edge. Both bending and extensional energy are included in the analysis. This paper described the experiments on the two natural frequencies which are present in association with two preferential modal directions, as a result of imperfection of the thin conical shell. Experimental work was conducted on two different bronze conical shells. One of these was specially designed to the effects of the adding distributed mass to the end of the conical shell. The other shells were identical in all dimensions except that of the thickness to the end of the conical shell. In this paper, the effect of a adding mass to a conical shell was investigated. Experimental result was that the magnitude of the natural frequency rate and the increase of depth of beat frequency depend upon the location of adding lumped mass on the surface of the conical shell.

Vibration Analysis in Reinforced Concrete Slab Using Tables of Orthogonal Arrays (직교배열표을 활용한 슬래브 구조체의 진동 해석)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.372-378
    • /
    • 2005
  • Finite element analysis of concrete slab system in apartment building was executed using the tables of orthogonal arrays, and optimal design process was proposed. At first, experimental results show that sound peak components to influence the overall level and the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab. Finite element model of concrete slab was compared with experimental results, and well corresponded with an error of less than 10%. The tables of orthogonal arrays were used for finite element analysis with 8 factors. 3 related to material properties and 5 related to slab shape parameters and its results were analyzed by statistical method, ANOVA. The most effective factor among them was slab thickness, and main effect factor from slab shape parameters was different from each natural frequency. The interaction was found in the higher mode over $3^{rd}$ natural frequency. From main effect plot and interaction plot, the optimal design factor to increase the natural frequency was determined.

  • PDF

Effect of Rotary Inertia of Concentrated Masses on the Natural Vibration of Fluid Conveying Pipe

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.202-213
    • /
    • 1999
  • Effects of the rotary inertia of concentrated masses on the natural vibrations of fluid conveying pipes have been studied by theoretical modeling and computer simulation. For analysis, two boundary conditions for pipe ends, simply supported and clamped-clamped, are assumed and Galerkin's method is used for transformation of the governing equation to the eigenvalues problem and the natural frequencies and mode shapes for the system have been calculated by using the newly developed computer code. Moreover, the critical velocities related to a system instability have been investigated. The main conclusions for the present study are (1) Rotary inertia gives much change on the higher natural frequencies and mode shapes and its effect is visible when it has small value, (2) The number and location of nodes can be changed by rotary inertia, (3) By introducing rotary inertia, the second natural frequency approaches to the first as the location of the concentrated mass approaches to the midspan of the pipe, and (4) The critical fluid velocities to initiate the system unstable are unchanged by introduction of rotary inertia and the first three velocities are $\pi$, 2$\pi$, and 3$\pi$ for the simply supported pipe and 2$\pi$, 8.99, and 12.57 for the clamped-clamped pipe.

  • PDF

A study on the dynamic characteristics of the cord-rubber laminates rectangular plate by finite element method (유한요소법을 이용한 코오드-고무 복합판의 동적특성에 관한 연구)

  • 김두만;김항욱
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.51-64
    • /
    • 1986
  • There has been considerable interest over the last twenty years in the subject of the elastic properties of the cord-rubber laminate. This has been due to the rather intensive study of the composites materials characteristics brought about by the increased use of rigid composites materials characteristics brought about by the increased use of rigid composites in many structural applications. The object of this study is to obtain the natural frequencies and modes of the simply supported cord-rubber laminate plates prior to the study on the analysis of the dynamic properties of the pneumatic tire. To obtain these natural frequencies and modes, the 12 degrees of freedom orthotropic rectangular plate finite elements are developed. By using classical lamination theory, the stress-strain relations are represented. The governing equation for the finite element is derived by energy method. To find the natural frequencies and modes, he eigenvalues and corresponding eigenvectors are computed by the well known Jacobi power method. In order to verify the capability of this present finite element, the results of the specially orthotropic plate and the angle-ply laminate plate are compared with the analytical solution. The analytical and numberical results are in good agreement. The following problems of the simply supported plate are analyzed by the present finite element. a) the natural frequencies and mode shapes of the cord-rubber laminate plate for various aspect ratio. b) The natural frequencies and mode shapes of the orthotropic plate with the rectangular hole in its center.

  • PDF

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

Beat Map of King Song-Dok Bell (성덕대왕신종의 맥놀이 지도)

  • Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.353.1-353
    • /
    • 2002
  • Impulse response of a slightly asymmetric cylindrical shell is derived. Receptance method is applied to obtain the vibration mode and natural frequency of the slightly asymmetric cylindrical shell. Impulse response model is used to identify the vibration beat characteristics of King Song-Dok Bell. The theretical mode is compared and verified by the measured mode of King Song-Dok Bell. (omitted)

  • PDF

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

Transient Vibration Analysis of an Agricultural Tractor (농업용 트랙터의 과도 진동 분석)

  • 김용준;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.26 no.6
    • /
    • pp.509-516
    • /
    • 2001
  • This paper introduced some advantages of the time-frequency analysis of vibration and investigated, using the time-frequency transform, the characteristics of the transient motion of a tractor seat, which occurred during the tractor traversed over a rectangular obstacle on the flat surface. The characteristics of the short-time courier and wavelet transforms as time-frequency analysis methods were introduced and discussed to figure out which is more suitable to the analysis of the transient motions of agricultural tractors. Using each transform, transient vibration of a tractor seat was analyzed. Results of the analysis showed that the transient vibration of the seat was influenced by the natural frequencies of vertical mode of chassis, pitching mode of engine and pitching mode of cab of the tractor. The time sequence of the natural mode of tractor vibration was also revealed by the time-frequency analysis. The vibration path analysis by the time-frequency transform showed that the vibration energies transmitted from the front mounts to the seat were less than those from the rear mounts. The energy reduction ratios between the cab mounts and seat were also estimated to be about 72∼78%. The front mounts showed larger reduction than the rear mounts. However, the reduction difference between the right and left sides mounts was negligibly small. The short time Fourier transform was found to be a proper method for investigating the transient motions of farm machines and their effects on the ride vibration.

  • PDF

Analytical Study in Brake Judder Reduction of Medium Bus (중형 버스의 브레이크 저더 현상 개선에 대한 해석적 고찰)

  • 이계섭;서권희;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.148-156
    • /
    • 2001
  • Brake judder, one of low Sequency vibrations in brake system is determined by the excitation of Brake Torque Variation (BTV). The largest contributor to BTV is disc thickness variation. In this study, the static loads of brake torque at Suspension Mounting Points (SW) are obtained by the quasi-static analysis using DADS. The dynamic loads with frequency of BTV at SW are derived from correlation between forced vibration analysis with static loads and brake test results. And the accelerations at steering wheel were analyzed by forced vibration analysis with dynamic loads using commercial finite element program MSC/NASTRAN so that vibration characteristics of vehicle due to brake judder were investigated. Reliability of analysis results was verified through comparing the brake test results. Also, a parametric study with natural frequencies of frame, such as the 1st torsional mode and 1st bending mode, was conducted to reduce vibration amplitudes. As a result we could detect frame natural frequency conditions to improve vibration characteristics and obtained the frame model to reduce vibration amplitude.

  • PDF