• Title/Summary/Keyword: Natural gas hydrate

Search Result 102, Processing Time 0.033 seconds

The Effect of DME on Phase Equilibria of Methane Hydrates (DME가 메탄하이드레이트 상평형에 미치는 영향)

  • Lim, Gyegyu;Lee, Gwanghee
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.6
    • /
    • pp.660-669
    • /
    • 2012
  • Gas resources captured in the form of gas hydrates are an order of magnitude larger than the resources available from conventional resources. Focus of this research is to investigate the effect of DME on phase equilibria of methane hydrate, as well as the possibility of the use of the PRO/II computer simulation to estimate the phase equilibria. In systems containing water and a gaseous component like, for instance, methane, ethane, and propane, gas hydrates may occur, if conditions in terms of pressure and temperature are satisfied. Mixtures of gases, e.g. LPG or natural gas, are also able to form gas hydrates in the presence of water. The experiments presented here were performed at temperatures varying between 268.15K and 288.15K and at pressures varying between 1.88 MPa and 10.56 MPa. It was found that the phase equilibria of methane hydrate is influenced by the addition of DME to the system. The pressure for the equilibrium hydrate-liquid water-vapor (H - $L_w$ - V) in the system water + methane is reduced upon addition of DME. The phase equilibria of methane hydrate can be estimated by the PRO/II computer simulation, whereas those of methane hydrate containing DME or LPG can't be estimated properly.

Gas Hydrate Supply Chain analyses of economy for the natural gas transportation (천연가스 수송을 위한 Gas Hydrate Supply Chain의 경제성 분석)

  • Kim, Cheoulho;Lee, Jaeik;Jeong, Taeseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.151.1-151.1
    • /
    • 2010
  • Natural gas hydrates (NGH) provide 170 gas volumes per unit volume of the medium and are easier to make with moderate pressure and temperature (40 bar at 3 C). Once they form, their preservation temperature is 20 C at 1 bar, which is much milder than the LNG preservation. In case of using the NGH, The small and medium sized gas well has advantages for development because of NGH's these characteristics. According to the cost evaluation report of Gudmundsson in Norway and the research of MES in Japan, the gas well that uses the NGH has a cost saving effect about 10~20% compared LNG. The effect depends on distance and production. However, cost saving and efficiency of liquefaction process is increased by the development of LNG liquefaction technology. Therefore, these factors have to be reflected in economic analysis. The purpose of this research is to compare the cost of Gas Supply Chain according to the transport type, distance and gas reserves. Especially, we consider not only the cost of facility but also the total cost (production cost, transport cost, etc).

  • PDF

Natural Inhibitors for $CO_2$ Hydrate Formation (천연 물질을 이용한 이산화탄소 하이드레이트 형성 억제)

  • Sa, Jeong-Hoon;Lee, Bo Ram;Park, Da-Hye;Han, Kunwoo;Chun, Hee Dong;Lee, Kun-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.122.1-122.1
    • /
    • 2011
  • The motivation for this work was the potential of hydrophobic amino acids such as glycine, L-alanine, and L-valine to be applied as thermodynamic hydrate inhibitors (THIs). To confirm their capabilities in inhibiting the formation of gas hydrates, three-phase (liquid-hydrate-vapor) equilibrium conditions for carbon dioxide hydrate formation in the presence of 0.1 to 3.0 mol% amino acid solutions were determined in the range of 273.05 to 281.45 K and 14.1 to 35.2 bar. From quantitative analyses, the inhibiting effects of the amino acids (on a mole concentration basis) decreased in the following order: L-valine > L-alanine > glycine. The application of amino acids as THIs has several potential advantages over conventional methods. First, the environmentally friendly nature of amino acids as compared to conventional inhibitors means that damage to ecological systems and the environment could be minimized. Second, the loss of amino acids in recovery process would be considerably reduced because amino acids are non-volatile. Third, amino acids have great potential as a model system in which to investigate the inhibition mechanism on the molecular level, since the structure and chemical properties of amino acids are well understood.

  • PDF

Study on methane hydrate production using depressurization method (감압법을 이용한 메탄 하이드레이트 생산에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.34-41
    • /
    • 2010
  • Gas hydrates are solid solutions when water molecules are linked through hydrogen bonding and create host lattice cavities that can enclose many kinds of guest(gas) molecules. There are plenty of methane(gas) hydrate in the earth and distributed widely at offshore and permafrost. Several schemes, to produce methane hydrates, have been studied. In this study, depressurization method has been utilized for the numerical model due to it's simplicity and effectiveness. IMPES method has been used for numerical analysis to get the saturation and velocity profile of each phase and pressure profile, velocity of dissociation front progress and the quantity of produced gas. The values calculated for the sample length of 10m, show that methane hydrates has been dissolved completely in approximately 223 minutes and the velocity of dissociation front progress is 3.95㎝ per minute. The volume ratio of the produced gas in the porous media is found to be about 50%. Analysing the saturation profile and the velocity profile from the numerical results, the permeability of each phase in porous media is considered to be the most important factor in the two phase flow propagation. Consequently, permeability strongly influences the productivity of gas in porous media for methane hydrates.

Zero-Offset VSP Data Processing for Gas Hydrate-Bearing Sediments in East Sea (동해 가스하이드레이트 부존지역 제로오프셋 VSP 탐사 자료의 자료처리)

  • Kim, Myung-Sun;Byun, Joong-Moo;Yoo, Dong-Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.255-262
    • /
    • 2009
  • Conventionally, vertical-seismic-profiling (VSP) survey that provides high-resolution information has mainly performed to obtain the exact depth of the gas hydrate-bearing sediment, which is one of the key factors in the development of the gas hydrate. In this study, we extracted interval velocities and created corridor stacks from the first domestic zero-offset VSP data, which were acquired with three component receivers at UBGH09 borehole in Ulleung Basin where gas hydrate exists. Then we compared the corridor stacks with a CMP stacked section from surface seismic data. First of all, we converted the signals recorded with three component receivers to true vertical and horizontal components by phase rotation, and divided the data into direct waves and reflected waves by wavefield separation processing. The trend of the interval velocity extracted from the zero-offset VSP was similar to that of the sonic log obtained at the same borehole. Because the interval velocity of the gas hydrate-bearing sediment above the BSR was high, and it decreased suddenly through the BSR, we could infer that free gas is accumulated below the BSR. The results of comparing the corridor stacks to the CMP stacked section of the surface seismic data showed that most reflection events agreed well with those in the surface CMP stacked section and that the phase-rotated VSP data corresponded better with the surface seismic data than the VSP data without phase rotation. In addition, by comparing a corridor stack produced from the transverse component with the CMP stacked section of the surface seismic data, we could identify PS mode-converted reflections in the CMP stacked section.

Evaluation of Operating Conditions for the Natural Gas Transmission Pipeline in the Arctic Environment (극한지 장거리 천연가스 배관의 운전조건 평가)

  • Kim, Young-Pyo;Kim, Ho-Yeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2017
  • The operating temperature range of the natural gas pipeline in Arctic environment would be controlled primarily to optimize gas throughput and to minimize the environmental impact resulting from operation of such pipelines. The temperature of the gas as it flows through the pipeline is a function of both the Joule-Thomson effect and the pipe to soil heat transfer. Therefore, the heat transfer and Joule-Thomson effect of the buried natural gas pipeline in this study were carefully considered. Soil temperatures and overall heat transfer coefficients were assumed to be $0{\sim}-20^{\circ}C$ and $0{\sim}5.5W/m^2K$, respectively. The gas temperature and pressure calculations along a pipeline were performed simultaneously at different soil temperatures and overall heat transfer coefficients. Also, this study predicted the phase change and hydrate formation for different soil temperatures and overall heat transfer coefficients using HYSYS simulation package.

Investigation of Inhibition Effect on Hydrate Formation by Chemical Additives (화학첨가제를 이용한 하이드레이트 형성 억제 효과 분석)

  • Lee, Jeong-Hwan;Baek, Young-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.618-621
    • /
    • 2005
  • In this study, the phenomena of hydrate formation and inhibition were investigated according to varying the concentrations using methanol and ethylene glycol as chemical additives. The results reveal that the used additives display better inhibition effects compared to pure water by decreasing the formation temperature and the inhibition performance of methanol is superior to that of ethylene glycol. As a conclusion, the plugging phenomena of flowline in natural gas product ion. subsea and frozen field pipelines can be predicted by examining the hydrate formation and inhibition conditions. Specifically, the results of this study can be applied to the selection of the prevention criteria and method of hydrate formation.

  • PDF

$^{13}C$ NMR study on kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture ($^{13}C$ NMR을 이용한 질소 및 이산화탄소 혼합 가스의 메탄 하이드레이트 치환 속도 규명 연구)

  • Seo, Yu-Taek;Moudrakovski, Igor L.;Ripmeester, John A.;Kang, Seong-Pil;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.591-594
    • /
    • 2008
  • 지구 온난화 문제의 심각성이 대두되면서 이산화탄소 저감 기술에 대한 관심이 증폭되고 있다. 가장 이상적인 방법은 탄소가 포함되지 않은 청정 재생 에너지원이지만, 에너지 공급 규모 면에서 보면 근미래에도 화석 연료가 에너지 수요에 대한 주요 공급원으로 남아있을 것이라는 의견이 지배적이다. 많은 화석 연료 중 천연가스는 탄소 배출량이 가장 적은 청정 연료로 지난 10년간 수요가 폭발적으로 증가해왔다. 이를 고려해볼 때 탄소 배출량이 적은 천연가스를 생산하면서 이산화탄소를 격리 시킬 수 있는 기술은 매우 매력적이다. 본 연구에서는 심해저의 메탄 하이드레이트로 부터 천연가스를 생산하는 기술로서 이산화탄소와 질소의 혼합 가스를 사용하는 기술 개발의 일환으로 혼합 가스에 의한 메탄 하이드레이트 해리 속도를 $^{13}C$ NMR을 이용해 측정한 결과를 제시하고자 한다.

  • PDF

Studies on gas hydrate formation characteristics using microimaging technique (Microimaing을 이용한 하이드레이트 생성 특성 연구)

  • Seo, Yu-Taek;Moudrakovski, Igor L;Ripmeester, John A.;Seo, Dong-Joo;Roh, Hyun-Seog;Jung, Un-Ho;Koo, Kee-Young;Jang, Won-Jin;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.481-484
    • /
    • 2007
  • 마이크로 이미징은 물 분자가 하이드레이트 구조로 전환되는 것을 미시적으로 관찰할 수 있다. 본 고에서는 메탄과 $CO_2$ 하이드레이트 생성 실험을 실리카 젤과 bulk water를 이용해 실시하면서 이를 마이크로 이미징으로 관찰한 결과를 제시하고자 한다. Bulk water에서 하이드레이트 shell에 의해 하이드레이트 생성 속도가 제한을 받는 반면, 실리카 젤에서는 미세 pore에서의 생성 특성이 매우 빠르게 진행되는 것으로 관찰되었다.

  • PDF