• Title/Summary/Keyword: Natural flow regime

Search Result 71, Processing Time 0.026 seconds

Investigation of the change in physical habitat in the Geum-gang River by modifying dam operations to natural flow regime (자연유황 회복을 위한 댐 운영에 따른 금강의 물리서식처 변화 분석)

  • Choi, Byungwoong;Jang, Jiyeon;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.985-998
    • /
    • 2021
  • In general, the upstream dam changes downstream flow regime dramatically, i.e., from natural flow regime to hydropeaking flows. This study investigates the impact of the natural flow pattern on downstream fish habitat in a regulated river in Korea using the physical habitat simulation. The study area is a 13.4 km long reach of the Geum-gang River, located downstream from the Yongdam Dam, Korea. A field monitoring revealed that three fish species are dominant, namely Zacco platypus, Coreoleuciscus splendidus, and Opsariichthys bidens, and they account for 70% of the total fish community. Specially, Opsariichthys bidens is an indigenous species in the Geum-gang River. The three fish species are selected as target fish species for the physical habitat simulation. The Nays2D model, a 2D shallow water equation solver, and the HSI (Habitat Suitability Index) model are used for hydraulic and habitat simulations, respectively. To assess the impact of the natural flow pattern, this study uses the annual natural flow regime and hydropeaking flows from the dam. It is found that the natural flow regime increases significantly the Composite Suitability Index (CSI) in the study reach. Then, using the Building Block Approach (BBA), the scenarios for the modifying dam operations are presented in the study reach. Both Scenario 1 and scenario 2 are proposed by using the hydrological method considering both magnitude and duration of the inflow and averaging the inflow over each month, respectively. It is revealed that the natural flow regime embodied in scenario 1 and scenario 2 increases the Weighted Usable Area (WUA) significantly, compared to the hydropeaking flows. In conclusion, the modifying the dam operations by restoring to the natural flow pattern is advantageous to fish community.

Flow Regime Boundary for Restoring River Ecosystems: A Case of the Han River Basin (하천 생태계 복원을 위한 적정 유황 범위 고찰: 한강유역사례)

  • Kang, Seongkyu;Lee, Dong-Ryul;Choi, Sijung
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.1-8
    • /
    • 2019
  • River works for water utilization have substantially altered the natural flow regime, and it has resulted in deformation of healthy river ecosystems. In Korea, river restoration projects have conducted actively since 1990's. Major purposes of the river restoration are the rehabilitation of modified river channel, improvement of water quality, and creation of aquatic habitats as well as recreational spaces using natural material for river work. However, there have been little interests about the restoration of flow regime which influences to most aspects of river ecosystems. The restoration of natural flow regime has received much attention in preservation of aquatic ecosystems. It should be needed to explore the relationship between flow regime and river ecosystems, and the restoring flow regime is essential. This paper introduce the concept of environmental flow through the interrelation between flow regime and river ecosystem. It provides rolls of flow regime and addresses the method of establishing target flow regime using the RVA(Range of Variability Approach) that suggested by Richter et al.(1997) through analysis of altered flow pattern case of Han river basin.

Analysis of Natural Convection Core Configuration at Boundary Layer Flow Regime in a Low Aspect Ratio Rectangular Enclosure (낮은 종횡비의 직각밀폐용기내의 자연대류 경계층 흐름영역에서의 코어형상에 관한 근사해석)

  • 이진호;김무현;전주명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.349-358
    • /
    • 1988
  • Natural convection velocity and temperature profiles are obtained approximately in the core at boundary layer flow regime for varying Prandtl number in a low aspect ratio rectangular Enclosure. Analysis is based on the formally obtained core flow equations using the multiple scales method. Results show good agreement with the existing works for $P_{r}$ ~ 1. No comparison, however, is possible yet for $P_{r}$ >> 1 and $P_{r}$ < 1 due to the lack of available date. It is shown here that boundary layer flow regimes are governed by two parameters, A $R_{a}$$^{1}$4/ and A( $P_{r}$ $R_{a}$)$^{1}$4 for $P_{R}$.geq. 1 and $P_{r}$ < 1 respectively.ely.ively.ely.y.

Effects of Dams and Water Use on Flow Regime Alteration of the Geum River Basin (금강 유역의 댐과 물이용에 의한 유황의 변동특성 분석)

  • Kang, Seong-Kyu;Lee, Dong-Ryul;Moon, Jang-Won;Choi, Si-Jung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.325-336
    • /
    • 2010
  • This study presents the alteration of flow regime by effects of dams and water use in the Geum River Basin. The surface water use rate and the Impounded Runoff (IR) index were examined to assess the pressure indicators of the flow alteration. We applied the flow duration curve, flow regime coefficient, flood and low-flow frequency analysis as well as Range of Variability Approach (RVA) to investigate the quantitative changes in natural flow regimes. The results indicate that the high flow decreased and low flow increased respectively compared to the natural flow regimes at eight gauging stations. The Geum river is regulated by 139 dams and reservoirs storing 24% of the annual mean discharge and has high surface water use rate of 36%. These indicators are main pressure factors to alter flow regimes.

Estimation and Classification of Flow Regimes for South Korean Streams and River

  • Park, Kyug Seo;Choi, Ji-Woong;Park, Chan-Seo;An, Kwang-Guk;Wiley, Michael J.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.106-106
    • /
    • 2015
  • The information of flow regimes continues to be norm in water resource and watershed management, in that stream flow regime is a crucial factor influencing water quality, geomorphology, and the community structure of stream biota. The objectives of this study were to estimate Korean stream flows from landscape variables, classify stream flow gages using hydraulic characteristics, and then apply these methods to ungaged biological monitoring sites for effective ecological assessment. Here I used a linear modeling approach (MLR, PCA, and PCR) to describe and predict seasonal flow statistics from landscape variables. MLR models were successfully built for a range of exceedance discharges and time frames (annual, January, May, July, and October), and these models explained a high degree of the observed variation with r squares ranging from 0.555 (Q95 in January) to 0.899 (Q05 in July). In validation testing, predicted and observed exceedance discharges were all significantly correlated (p<0.01) and for most models no significant difference was found between predicted and observed values (Paired samples T-test; p>0.05). I classified Korean stream flow regimes with respect to hydraulic and hydrologic regime into four categories: flashier and higher-powered (F-HP), flashier and lower-powered (F-LP), more stable and higher-powered (S-HP), and more stable and lower-powered (S-LP). These four categories of Korean streams were related to with the characteristics of environmental variables, such as catchment size, site slope, stream order, and land use patterns. I then applied the models at 684 ungaged biological sampling sites used in the National Aquatic Ecological Monitoring Program in order to classify them with respect to basic hydrologic characteristics and similarity to the government's array of hydrologic gauging stations. Flashier-lower powered sites appeared to be relatively over-represented and more stable-higher powered sites under-represented in the bioassessment data sets.

  • PDF

Suppression of Wake Transition and Occurrence of Lock-on Downstream of a Circular Cylinder in a Perturbed Flow in the A-mode Instability Regime (A-mode 불안정성 영역에서 교란유동장에 놓인 원형실린더 후류의 천이지연과 유동공진의 발생)

  • Kim, Soo-Hyeon;Bae, Joong-Hun;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.702-710
    • /
    • 2007
  • Direct numerical simulation (DNS) is performed to investigate suppressed wake transition and occurrence of lock-on in the wake of a circular cylinder disturbed by sinusoidal perturbation at the Reynolds number of 220 (A-mode instability regime). The sinusoidal perturbation, of which the frequency is near twice the natural shedding frequency, is superimposed on the free stream velocity. It is shown that the wake transition behind the circular cylinder can be suppressed due to the perturbation of the free stream velocity. This change causes a jump in the Strouhal number from the value corresponding to A-mode instability regime to the value corresponding to retarded wake transition regime (extrapolated from laminar shedding regime) in the Strouhal-Reynolds number relationship. As a result, vortex shedding frequency is locked on the perturbation frequency depending not on the natural shedding frequency but on the modified shedding frequency.

Validity Review of Mixed Convection Flow Regime Map in Vertical Cylinders (수직 원형관내 혼합대류 유동영역지도의 유효성 검토)

  • Kang, Gyeong-Uk;Kim, Hyoung-Jin;Yoon, Si-Tae;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.27-35
    • /
    • 2014
  • The existing flow regime map on mixed convection in vertical cylinders was investigated through an analysis of original literatures and its re-formation. The original literatures related to the existing map were reviewed. Using the investigated data and heat transfer correlations, the map was redrawn independently, and compared with the existing map. The redrawn map showed that mixed convection regime was not curved lines but straight lines and the transition regime was unable to be reproduced. Unlike the existing map with a little data, there are lots of data in the redrawn map. The reviews revealed that the existing map used the data selectively among the experimental and theoretical results, and a detailed description for lines forming mixed convection and transition regime was not provided. While considerable studies on mixed convection have been performed since that of Metais and Eckert, the existing map has still been used as the best method to distinguish natural, forced and mixed convection regime.

Chaotic Thermal Convection in a Wide-Gap Horizontal Annulus : Pr=0.1 (넓은 수평 환형 공간에서의 혼동 열 대류 : Pr=0.1)

  • 유주식;엄용균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.88-95
    • /
    • 2001
  • Transition to chaotic convection is investigated for natural convection of a fluid with Pr=0.1 in a wide-gap horizontal annuls. The unsteady two-dimensional stream-function-vorticity equation is solved with finite difference method. As the Rayleigh number is increased, the steady 'downward flow' bifurcates to a time-periodic flow with a fundamental frequency, and afterwards a period-doubling bifurcation occurs. As the Rayleigh number is increased further, the chaotic flow regime is reached after a sequence of successive Hopf bifurcation to quasi-periodic and chaotic flow regimes. The route to chaos shows the Ruelle-Takens-Newhouse scenario. The flow of chaotic regime displays complex coalescence and separation of eddies in the side and lower region of the annulus.

  • PDF

High prandtl number natural convection in a low-aspect ratio rectangular enclosure (종횡비 가 낮은 직각밀폐용기내 의 Prandtl 수 가 큰 유체 의 자연대류 에 관한 실험적 연구)

  • 이진호;황규석;현명택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.750-756
    • /
    • 1985
  • Experimental investigation was carried out to study the natural convection of water and silicon oil due to end temperature differences in a horizontally insulated rectangular enclosure of aspect ratio 0.1 with a special attention on the core configuration in the laminar boundary-layer flow regime. Rayleigh number ranges covered herein are Ra=4.40 * 10$^{6}$ -9.64 * 10$^{7}$ for water and Ra=1.69*10$^{5}$ -3.80*10$^{6}$ for silicon oil, respectively. In the case of water, for Ra.geq.2.21 * 10$^{7}$ there appeared distinct horizontal thermal layers adjacent to the horizontal boundaries in the core and the temperature distribution outside the horizontal thermal layers, i.e., in the mid-core region, is vertically stratified. The core flow pattern was shown to be nonparallel with a weak back flow in the mid-core for Ra.geq.3.63 *10$^{7}$ . In the case of silicon oil, distinct horizontal thermal layers appeared along the core horizontal boundaries for Ra.geq.1.27 * 10$^{6}$ with a stratified temperature distribution in the mid-core, but the core flow pattern in this case was shown to be parallel. In addition, secondary flow appeared near the hot wall for Ra.geq.3.80 * 10$^{6}$ . Nusselt number, Nu, was found to be proportional to R $a^{0.3}$ for water and R $a^{0.28}$ for silicon oil in the boundary-layer flow regime. There also in an indication from the comparison with other results that Nu is independent of aspect ratio for water in the boundary-layer flow regime in low aspect ratio enclosures.res.

Natural Convection of Air in a Horizontal Annulus with the Inner Cylinder Cooled by Constant Heat Flux (일정 열 유속으로 냉각되는 안쪽 실린더를 갖는 수평 환형 공간에서의 공기의 자연 대류)

  • 유주식;엄용균;김용진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.755-762
    • /
    • 2000
  • Natural convection of air in a horizontal annulus with the inner cylinder cooled by the application of a constant heat flux and the isothermally heated outer cylinder is considered. The bifurcation phenomenon of flow patterns and the heat transfer characteristics are numerically investigated. The zero initial condition induces a unicellular flow in a half annulus. A bicellular flow consisting of two counter-rotating eddies in a half annulus can be obtained above a certain critical Rayleigh number. A transition from the bicellular to the unicellular flow occurs with a decrease in Rayleigh number. Hysteresis phenomena have not been observed. In the regime of dual flows, the overall Nusselt number of the bicellular flow is greater than that of the unicellular flow.

  • PDF