• Title/Summary/Keyword: Natural fine aggregate

Search Result 207, Processing Time 0.022 seconds

An Experimental Study on the Engineering Properties and Durability of Concrete Using High Quality Recycled Fine Aggregate (고품질 순환모래를 사용한 콘크리트의 공학적 특성 및 내구성능에 관한 실험적 연구)

  • Moon Hyung-Jae;Lee Dong-Heck;Kim Young-Sun;Na Chul-Sung;Kim Jae-Hwan;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.145-148
    • /
    • 2005
  • Recently, because of the increase of management system about waste concrete and the policy of recycling promotion of government, the use of recycled aggregate is rapidly increasing nowadays. But, due to the poverty of quality and the lack of KS standard, the use of recycled fine aggregate is not active. Therefore, it was intended to compare and investigate effects which types of sand and replacement ratio of recycled fine aggregate. As the result of this study, in the case of the recycled replacement ratio of 25$\%$, fresh and engineering properties were higher than those of natural fing aggregates with the exception of durability. Also, because quality according to types of fine aggregate shows the difference between various properties, it was considered that the profound study for this result would be necessary.

  • PDF

An Experimental Study on the Physical and Mechanical Properties of Concrete Using Recycled Sand (순환잔골재를 활용한 콘크리트의 물리·역학적 특성에 관한 실험적 연구)

  • Kim, Jung-Ho;Sung, Jong-Hyun;Lee, Seung-Yeop;Kwon, Gu-Hyuk;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.359-365
    • /
    • 2017
  • This study examined concrete characteristics depending on the replacement ratio of recycled fine aggregates, which suits the KS F 2573 concrete recycled aggregate standard. As physical properties, slump, air content, changes in the elapse of time and compressive strength were studied in order to provide basic data for activation of recycled fine aggregate recycling. As a result of experimenting recycled fine aggregate concrete, the increase in the replacement ratio of recycled aggregates led to the increase in slump and air content. Also, when the replacement ratio of recycled fine aggregates was 30%, it was judged that there was no problem with constructability. When the replacement ratio was 30%, recycled fine aggregate concrete had a similar tendency to natural aggregate concrete at a compressive strength of 24MPa. When the replacement ratio was 30%, at a target strength of 24MPa, recycled fine aggregate concrete had the same physical characteristics as natural aggregate concrete. This means that a replacement ratio of 30% is appropriate for replacement of recycled fine aggregates. In future, there will be a need to improve the quality of recycled fine aggregates for activating the use of recycled fine aggregates and further research will have to evaluate physical properties of recycled fine aggregate concrete using improved recycled fine aggregates.

Study on the Shrinkage Properties of Concrete using Recycled Fine Aggregate (순환골재콘크리트의 수축특성에 관한 연구)

  • Na, Chul-Sung;Lee, Hyoung-Jun;Nam, Jeong-Soo;Kwon, Soo-Kil;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.681-684
    • /
    • 2008
  • In case of recycled fine aggregate, density and absorption ratio is lower than natural one, so it is used to lower value added products and it is limited its usage. It is reported that Compressive and tensile strength of recycled concrete is more deteriorate and shrinkage properties is very deteriorate because high absorption of recycled fine aggregate. Accordingly, in this study, it is develop that dry manufacturing system composed specific gravity separator of high-speed rotation impact type, reclaimer of minuteness fine aggregate and evaluate that shrinkage properties of recycled concrete using recycled fine aggregate at producing this system. Hereafter, it is present that fundamental data to practical use recycled fine aggregate.

  • PDF

Engineering Characteristics of Resource-Cycling Mortar according to the Variation of Illite Replacement Ratio and Fine Aggregate Type (일라이트 치환률 및 잔골재 종류 변화에 따른 자원순환형 모르타르의 공학적 특성)

  • Kim, Min-Yoyng;Song, Yuan-Lou;Kim, Sang-Sup;Yoon, Won-Geun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.46-47
    • /
    • 2015
  • This study has analyzed the engineering characteristics of resource-cycling mortar according to the variation of fine aggregate type using illite with high development potentials by setting the goal as developing eco-friendly construction materials. As a result, while flow has increased if recycled fine aggregate and waste refractory are used separately or mixing them adequately in case of flow and compressive strength, the flow had somewhat declined followed by illite replacement. However, the possibility of such usage is determined to be adequate if used by mixing illite, recycled fine aggregate and waste refractory properly due to the dry shrinkage effect.

  • PDF

Effect of pozzolans on mechanical behavior of recycled refractory brick concrete in fire

  • Nematzadeh, Mahdi;Baradaran-Nasiri, Ardalan;Hosseini, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.339-354
    • /
    • 2019
  • Reusing building materials and concrete of old buildings can be a promising strategy for sustained development. In buildings, the performance of materials under elevated temperatures is of particular interest for determining fire resistance. In this study, the effect of pozzolan and aggregate type on properties of concrete exposed to fire was investigated. In doing so, nanosilica with cement-replacement levels of 0, 2, and 4% as well as silica fume and ultrafine fly ash with cement-replacement levels of 0, 7.5, and 15% were used to study effect of pozzolan type, and recycled refractory brick (RRB) fine aggregate replacing natural fine aggregate by 0 and 100% was utilized to explore effect of aggregate type. A total of 126 cubic concrete specimens were manufactured and then investigated in terms of compressive strength, ultrasonic pulse velocity, and weight loss at $23^{\circ}C$ and immediately after exposure to 400 and $800^{\circ}C$. Results show that replacing 100% of natural fine aggregate with recycled refectory brick fine aggregate in the concretes exposed to heat was desirable, in that it led to a mean compressive strength increase of above 25% at $800^{\circ}C$. In general, among the pozzolans used here, silica fume demonstrated the best performance in terms of retaining the compressive strength of heated concretes. The higher replacement level of silica fume and ultrafine fly ash pozzolans in the mixes containing RRB fine aggregate led to a greater weight loss rate, while the higher replacement level of nanosilica reduced the weight loss rate.

Effect of crushed waste glass as partial replacement of natural fine aggregate on performance of high strength cement concrete

  • Ajmal, Paktiawal;Mehtab, Alam
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.251-277
    • /
    • 2022
  • Disposal of industrial waste in cities where municipal authorities permitting higher floor area ratio coupled with increasing living standards, a lot of demolition waste is being generated. Its disposal is a challenge particularly in megacities where no landfills are available. The ever-increasing cost of building construction materials also necessitates consuming demolition wastes in a useful manner to save fresh natural raw materials. In the present work, the crushed waste glass is used in high-strength concrete as a partial replacement of fine aggregate. The control concrete of grade M60 was proportioned following BIS 10262-2009. The crushed waste glass has been used as a partial replacement with varying percentages of 10, 20, 30, and 40% by weight of fine aggregate. Experimental tests were carried on the fresh and hardened state of the concrete. The effect of crushed waste glass on the workability of the concrete has been investigated. Non-destructive tests, acid attack tests, compressive strength, split tensile strength, and X-ray diffraction analysis was carried out for the control concrete and concrete containing crushed waste glass after 7, 28, and 270 days of normal curing. The results show that for the same w/c ratio, the workability of concrete increases with increasing replaced crushed waste glass content. However, the decrease in compressive strength of the concrete after 28 days of normal curing and further after 28 days of acid attacks, up to 30% replacement level of fine aggregate by the crushed waste glass is insignificant.

Evaluation of Resistance to Freezing and Thawing of Concrete using Industrial by-products Aggregate (산업부산물 골재를 사용한 콘크리트의 내동해성 평가)

  • Choi, Sung-Woo;Ryu, Deug-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.226-227
    • /
    • 2021
  • Various attempts are being made to reduce carbon emissions through recycling of industrial by-products in the construction materials industry to reduce carbon emissions, and cement substitutes such as blast furnace slag and fly ash are widely used. Although it is suggested that the use of industrial by-product aggregate is possible in 'Aggregate', the use case of industrial by-product aggregate is very rare in the actual field. In this study, as an industrial by-product, fine slag aggregate is used as fine aggregate among aggregates that can be used as aggregate for concrete, and coarse aggregate is used as a substitute for natural aggregate. WWe tried to suggest various ways to expand the use of industrial by-product aggregates.

  • PDF

A Study on the Quality of the Water Coold Blast Furnace Slag Fine Aggregate (고로수쇄 슬래그 잔골재의 품질에 대한 고찰)

  • 문한영;최연왕;김기형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.24-28
    • /
    • 1990
  • The purpose of this study is to examine through the experimental study whether the water cooled unprocessed blast furnace slag produced in the country is useful for the fine aggregate of concrete or not. The results of this study show that the quality of the water cooled blast furnace slag is inferior to that of natural river sand and that the concrete made by substituting the water cooled blast furnace slag for fine aggregate have a tendency to decrease to some extent in strength. But if the water cooled blast furnace slag is transformed into more hardened state material, to use it as the fine aggregate of concrete will be possible.

  • PDF

Flowing and Strength Properties of Low Carbon Inorganic Composite Depending to Fine Aggregate Types and Replacement Ratio (잔골재 종류 및 치환율에 따른 저탄소 무기결합재의 유동 및 강도특성)

  • Park, Jong-Pil;Bae, Sang-Woo;Lee, Yun-Seong;Lee, Kang-Pil;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.235-236
    • /
    • 2011
  • This study analyzed flowing and strength properties of mortar depending to fine aggregate types and replacement ratio by using blast furnace slag, red mud, and silica fume that are industrial by products. The findings showed that higher replacement level of fine aggregate increased air content while decreased table flow. In addition, compressive strength showed that the higher replacement level was regardless of fine aggregate types, the lower strength became. Mortar substituted by the dredged sand showed high strength.

  • PDF

A Study on Physical Properties of FINEX Slag to Utilize Fine Aggregate for Concrete (콘크리트용 잔골재로 활용하기 위한 파이넥스 슬래그의 물리적 특성에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung-Keol;Lee, Hoon-Ha;Choi, Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.79-87
    • /
    • 2012
  • Recently, Development of substitution aggregate is urgently needed because aggregate shortage is continuing due to the exhaustion of natural aggregate and strict restrictions of environment in construction industry. Therefore, This paper was examined the fundamental properties for application of FINEX slag by finex process as fine aggregate for concrete. Through this study, we propose the practical method of FINEX slag as fine aggregate for concrete.

  • PDF