• 제목/요약/키워드: Natural fiber

Search Result 966, Processing Time 0.033 seconds

The Suitability Assessment of Performance Standards on Landscaping Rocks of GRS(Glass Fiber Reinforced Slag) Panels (유리섬유강화슬래그(Glass-fiber Reinforced Slag)의 경관석 성능 적합성 평가)

  • Yoon, Bok-Mo;Lee, Yong-Bok;Koo, Bonhak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.2
    • /
    • pp.127-135
    • /
    • 2013
  • This study was carried out to verify the suitability of GRS(Glass-fiber Reinforced Slag) as natural type landscape stone according to the material property and structural safety performance standards. The structural safety performance of the GRS panel showed 12.4MPa and 16.2MPa each in flexural strength at 2 and 3% content of glass fiber while the flexural strength at 4 and 5% of glass fiber content showed 26.9MPa, and 30.2MPa, respectively, all satisfying the standards. In addition, air-dried gravity was found to be 1.82~1.89 in measuring range at 2~5% level of glass fiber content, satisfy the existing standards 1.8~2.3. In structural safety performance, the range of flexural strength consequent on glass fiber content was surveyed to be 12.8~30.2MPa, all satisfying the performance standards, while 10MPa and more while the compressive strength range was found to be 41.5~53.3MPa, all satisfying the performance standards, 40~60MPa. This study judged the suitability of only the items for a property of matter of landscape stone GRS by applying the natural-form landscape stone GFRC material standard, but in case an installation constructed with GRS material comes into existence later, there should be comprehensive performance guidelines through the research on durability, landscape performance and environmental and ecological performance.

University Students' Awareness of Eco-friendly Textile Fiber (친환경 섬유소재에 대한 대학생들의 인식도 연구)

  • Lee, Sun Young;Lee, Seung Goo;Kim, Jung Hwa;Lee, Jung Soon
    • Korean Journal of Human Ecology
    • /
    • v.21 no.4
    • /
    • pp.781-790
    • /
    • 2012
  • In midst of growing interest and awareness towards sustainability and being "green", there has been increased demand for sustainable clothing. In the purpose of boosting eco-friendly textiles industry, this research was conducted by investigating environmentally-conscious clothing behavior of university students and assessing their views on eco-friendliness of fibers. Thus, their awareness on recycled polyester fiber was evaluated. The research was conducted by surveying 257 university students residing in Daejeon. The data were analyzed with descriptive statistics, factor analysis, and reliability analysis, using SPSS 19.0. The results were as follows. 1) The majority of the subjects answered "Disposing clothing in the clothing recycling container" to reduce environmental impact. 2) Six factors of eco-friendliness of fiber were extracted as reutilization, unfinishedness, economics, environment preservation, natural materials, and slow fashion by using factor analysis. 3) Subjects scored organic cotton as most eco-friendly among various fibers. Recycled polyester fiber was graded less sustainable than natural fiber, but more eco-friendly than artificial one. 4) In assessment of subject's awareness of recycled polyester fiber, they highly valued on resource-reutilization and economics, but less valued on its hygiene, thermal insulation and health-functionality.

Water Treatment Effect of Bamboo Fiber on the Mechanical Properties, Impact Strength, and Heat Deflection Temperature of Bamboo Fiber/PLA Biocomposites (대나무섬유/PLA 바이오복합재료의 기계적 특성, 충격강도 및 열변형온도에 미치는 대나무섬유 수처리의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.17 no.3
    • /
    • pp.96-103
    • /
    • 2016
  • In this work, pellets consisting of cellulose-based natural fiber bamboo and poly(lactic acid) (PLA) was prepared by extrusion process and then bamboo fiber/PLA biocomposites with various fiber contents were produced by injection molding process. The water treatment effect of bamboo fibers on the flexural, tensile, and impact properties and heat deflection temperature of the biocomposites were investigated. The thermal stability of bamboo and the flexural properties, tensile modulus, and impact strength depended on the presence and absence of water treatment as well as on the fiber content, whereas the heat deflection temperature are influenced mainly by water treatment. The increase of the mechanical and impact properties of biocomposites is ascribed to the improvement of the interfacial adhesion between the bamboo fibers and the PLA matrix by the water treatment. The result suggests that the pre-treatment of natural fibers by using water, which is environment-friendly and labor-friendly, may contribute to enhancing the performance of biocomposites.

Effect of surface treatment on mechanical and micro-structural properties of basalt fiber reinforced mortars

  • Sukru Ozkan
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.195-212
    • /
    • 2024
  • The use of basalt fibers in various types of fiber-reinforced mortars has been increasing. One of the factors that expands the use of basalt fibers is that it is a natural fiber and therefore the production costs are lower than fibers such as PVA fiber. Basalt fibers have some drawbacks such as reducing the workability of mortars in which basalt fibers are added due to their structure, and negatively affecting the mechanical properties when used above a certain proportional amount depending on the type of mixture. For this purpose, in this study, as a different application, the surface of basalt fibers with different lengths (6 and 12 mm) was treated with Triton X-100 surfactant, and these disadvantages were tried to be reduced. In the study, a two-step method was followed. In the first one, the effectiveness of adding untreated and treated basalt fiber at 1, 1.25, 1.5, 1.75 and 2% by weight to the mortar mixtures was determined by conducting flow spread and flow rate as fresh mortar characteristics. In the second one, microstructural characterization and mechanical tests were performed as hardened mortar properties. The results showed that the flow characteristics of basalt fiber reinforced mortars treated with surfactant improved compared to untreated basalt fiber reinforced mortars. In terms of mechanical properties, the addition of 2% treated basalt fiber by weight to the mixtures allowed to obtain %18, %12, and%48 higher values of compressive, flexural, and tensile strength values, respectively, compared to the same amount of untreated basalt fiber mixtures.

Study on the Analysis of Structural Dynamic Characteristics and Modal Test of Unmanned Helicopter Rotor Blades (무인헬리콥터 로터 블레이드의 구조적 진동특성 분석 및 시험에 관한 연구)

  • 정경렬;이종범;한성호;최길봉
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.215-224
    • /
    • 1995
  • In this paper, the three-dimensional finite element model is established to investigate the structural dynamic characteristics of rotor blade using a finite element analysis. Six natural frequencies and mode shapes are calculated by computer simulation. The first three flapping modal frequencies, the first two lead-lag modal frequencies, and the first feathering modal frequency are validated through comparison with the modal test results of the fixed rotor blade. The computer simulation results are found in good agreement with experimentally measured natural frequencies. The important results are obtained as follows: (1) Natural frequencies are changed due to the variation of rotational speed and fiber angle of rotor blade, (2) Weak coupling between flapping mode shape and lead-lag mode shape are detected, (3) Centrifugal force has more effect on flapping modal frequency than lead-lag modal frequency.

  • PDF

Natural Dyeing Fabrics with Serratuls coronate var. insularis Kitamura (산비장이(Serratuls coronate var. insularis Kitamura)를 이용한 직물의 천연염색)

  • HwangBo, Soo-Jeung;Jung, Yang-Sook;Bae, Do-Gyu
    • Journal of Sericultural and Entomological Science
    • /
    • v.48 no.2
    • /
    • pp.46-55
    • /
    • 2006
  • In this thesis, we took some stalks, flowers, and leaves of the Serratuls coronate var. insularis which are able to propagate as mass n our wild to extract the dyeing solution, and cotton and silk were dyed using them in many different conditions. Silk was dyed darker than cotton. We found there was not a big difference between silk and cotton in the given condition considering 'Y' values vs. dyeing temperature. There was a rapid decreasing of 'Y' values after one to two hours and almost all of dyeing was completed at these times. We found there was a dyeing acceleration at the higher dyeing density and the lower 'Y' value. If the density was low, dyeing attachment was reduced by dyeing ability via the density of liquid in both plants. Silk was affected higher by mordant dyes in both plants. Fe and Cu had an effect by mordant dyes slightly an Serratuls coronate var. insularis.

Natural Dyeing Fabrics with Hypericum ascyron L. (물레나물(Hypericum ascyron L.)을 이용한 직물의 천연염색)

  • HwangBo Soo-Jeung;Jung Yang-Sook;Bae Do-Gyu
    • Journal of Sericultural and Entomological Science
    • /
    • v.47 no.2
    • /
    • pp.78-87
    • /
    • 2005
  • In this thesis, we took some stalks, flowers, and leaves of the Hypericum ascyron L. which are able to propagate as mass in our wild to extract the dyeing solution, and cotton and silk were dyed using them in many different conditions. Silk was dyed darker than cotton with increasing the pH density. Silk was dyed darkest among Hypericum ascyron if pH was neutral. We found there was not a big difference between silk and cotton in the given condition considering 'Y' values vs. dyeing temperature. However cotton was dyed darker in hypericum ascyron. There was a rapid decreasing of 'Y' values after one to two hours and almost all of dyeing was completed at these times. We found there was a dyeing acceleration at the higher dyeing density and the lower 'Y' value. If the density was low, dyeing attachment was reduced by dyeing ability via the density of liquid in this plants. Silk was affected higher by mordant dyes in this plants. Fe and Cu had no effect on Hypericum ascyron.

A study of complex dyeing using natural dyestuffs - Focus on cellulose fiber - (천연염료의 복합염색에 관한 연구 - 셀룰로오즈계 섬유를 중심으로 -)

  • Kim, Mi Kyung;Kim, Taemi
    • The Research Journal of the Costume Culture
    • /
    • v.24 no.4
    • /
    • pp.431-440
    • /
    • 2016
  • The purpose of this research is to revive the colors of combination dyeing and mixed dyeing with natural dyestuffs. The fabrics used were cotton and rayon. The natural dyestuffs used in this research were indigo, Phellodendron amurense, and Caesalpinia sappan. The effects of combination dyeing were as follows. First, all samples showed deeper colors. Second, according to the results of the surface K/S measurement, while the surface K/S of cotton was over 15, that of rayon was over 17. Third, the results of the light fastness measurement showed the superiority (by over grade 4) of all the samples, except in the case of rayon fiber sample no. 6 (which had been pre-dyed with indigo five times before being dyed with P. amurense once and then being dyed with C. sappan once). In the color fastness to washing measurement, all fibers showed superiority (by over grade 3~4). In addition, the color fastness to dry cleaning of all fibers was satisfactory or excellent (by over grade 3). Fourth, according to the results of the tensile strength measurement, it tended to decrease in the case of cotton and increase in the case of rayon. Fifth, the results of the density measurement showed that the density of cotton decreased by about 15~20% in the case of warp and 10% in the case of weft for all samples. The density of rayon decreased 20% in the case of warp for all samples and increased 30% in the case of weft for all samples.

A SENSITIVITY ANALYSIS OF THE KEY PARAMETERS FOR THE PREDICTION OF THE PRESTRESS FORCE ON BONDED TENDONS

  • Jang, Jung-Bum;Lee, Hong-Pyo;Hwang, Kyeong-Min;Song, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.319-328
    • /
    • 2010
  • Bonded tendons have been used in reactor buildings at some operating nuclear power plants in Korea. Assessing prestress force on these bonded tendons has become an important pending problem in efforts to assure continued operation beyond their design life. The System Identification (SI) technique was thus developed to improve upon the existing indirect assessment technique for bonded tendons. As a first step, this study analyzed the sensitivity of the key parameters to prestress force, and then determined the optimal parameters for the SI technique. A total of six scaled post-tensioned concrete beams with bonded tendons were manufactured. In order to investigate the correlation of the natural frequency and the displacement to prestress force, an impact test, a Single Input Multiple Output (SIMO) sine sweep test, and a bending test using an optical fiber sensor and compact displacement transducer were carried out. These tests found that both the natural frequency and the displacement show a good correlation with prestress force and that both parameters are available for the SI technique to predict prestress force. However, displacements by the optical fiber sensor and compact displacement transducer were shown to be more sensitive than the natural frequency to prestress force. Such displacements are more useful than the natural frequency as an input parameter for the SI technique.

Injectable Hydrogel as an Artificial Nucleus Pulposus in a Degenerative Intervertebral Disc (Injectable Hydrogel을 이용한 인공 Nucleus Pulposus의 제조)

  • Park, Jin-Hyun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.13-16
    • /
    • 2002
  • The Intervertebral disc is a composite structure made up of the nucleus pulposus (NP) core surrounded by the multi-layered fibers of the annulus fibrosis (AF)[1]. Water is drawn into the NP by the presence of hydrophilic proteins called proteoglycans [2]. The AF, with successive layers oriented in alternating directions, surrounds the NP. These layers are placed under tension as the NP absorbs water and swells [3]. (omitted)

  • PDF