• 제목/요약/키워드: Natural deposition model

검색결과 38건 처리시간 0.03초

Improvement and validation of aerosol models for natural deposition mechanism in reactor containment

  • Jishen Li ;Bin Zhang ;Pengcheng Gao ;Fan Miao ;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2628-2641
    • /
    • 2023
  • Nuclear safety is the lifeline for the development and application of nuclear energy. In severe accidents of pressurized water reactor (PWR), aerosols, as the main carrier of fission products, are suspended in the containment vessel, posing a potential threat of radioactive contamination caused by leakage into the environment. The gas-phase aerosols suspended in the containment will settle onto the wall or sump water through the natural deposition mechanism, thereby reducing atmospheric radioactivity. Aiming at the low accuracy of the aerosol model in the ISAA code, this paper improves the natural deposition model of aerosol in the containment. The aerosol dynamic shape factor was introduced to correct the natural deposition rate of non-spherical aerosols. Moreover, the gravity, Brownian diffusion, thermophoresis and diffusiophoresis deposition models were improved. In addition, ABCOVE, AHMED and LACE experiments were selected to validate and evaluate the improved ISAA code. According to the calculation results, the improved model can more accurately simulate the peak aerosol mass and respond to the influence of the containment pressure and temperature on the natural deposition rate of aerosols. At the same time, it can significantly improve the calculation accuracy of the residual mass of aerosols in the containment. The performance of improved ISAA can meet the requirements for analyzing the natural deposition behavior of aerosol in containment of advanced PWRs in severe accident. In the future, further optimization will be made to address the problems found in the current aerosol model.

구획모델을 이용한 주택에서 이산화질소의 발생강도 및 감소상수 동시 추정 (Estimation of Source Strength and Deposition Constant of Nitrogen Dioxide Using Compartment Model)

  • 양원호;손부순;손종렬
    • 한국환경보건학회지
    • /
    • 제31권4호
    • /
    • pp.260-265
    • /
    • 2005
  • Indoor air quality might be affected by source strength of indoor pollutants, ventilation rate, decay rate, outdoor level, and so on. Although technologies measuring these factors exist directly, direct measurements of all factors are not always practical in most field studies. The purpose of this study was to develop an alternative method to estimate the source strength and deposition constant by application of multiple measurements. For the total duration of 60 days, indoor and outdoor $NO_2$ concentrations every 3 days were measured in 30 houses in Seoul, Asan and Daegu. Using a compartment model by mass balance and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor (emission rate divided by sum of air exchange rate and deposition constant) were calculated. Subsequently, the source strength and deposition constant were estimated. Natural ventilation was $1.80{\pm}0.42\;ACH,\;1.11{\pm}0.50\;ACH,\;0.92{\pm}0.26\;ACH$ in Seoul, Asan and Daegu, respectively. Calculated deposition constant(K) and source strength of $NO_2,$ in this study were $0.98{\pm}0.28\;hr^{1}\;and\;16.28{\pm}7.47\;ppb/h,$ respectively.

PREDICTION OF THE TRITIUM CONCENTRATION IN THE SOIL WATER AFTER THE OPERATION OF WOLSONG TRITIUM REMOVAL FACILITY

  • CHOI HEUI-JOO;LEE HANSOO;SUH KYUNG SUK;KANG HEE SUK
    • Nuclear Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.385-390
    • /
    • 2005
  • The effect of the Wolsong Tritium Removal Facility on the change of tritium concentration in the soil water was assessed by introducing a dynamic compartment model. For the mathematical modeling, the tritium in the environment was thought to come from two different sources. Three global tritium cycling models were compared with the natural background concentration. The dynamic compartment model was used to model the behavior of the tritium from the nuclear power plants at the Wolsong site. The source term for the dynamic compartment model was calculated with the dry and wet deposition rates. The area around the Wolsong nuclear power plants was represented by the compartments. The mechanisms considered in deriving the transfer coefficients between the compartments were evaporation, runoff, infiltration, hydrodynamic dispersion, and groundwater flow. We predicted what the change of the tritium concentration around the Wolsong nuclear power plants would be after future operation of the tritium removal facility to show the applicability of the model. The results showed that the operation of the tritium removal facility would reduce the tritium concentration in topsoil water quickly.

거주지역 실내공기 특성 및 이산화질소 노출에 관한 연구 (Residence s Exposure to Nitrogen Dioxide and Indoor Air Characteristics)

  • 양원호;배현주;정문호
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.183-192
    • /
    • 2002
  • Indoor air quality is affected by source strength of pollutants, ventilation rate, decay rate, outdoor level and so on. Although technologies exist to measure these factors directly, direct measurements of all factors are impractical in most field studies. The purpose of this study was to develop an alternative methods to estimate these factors by multiple measurements. Daily indoor and outdoor NO$_2$concentrations for 21 days in 20 houses in summer and winter, Seoul. Using a mass balance model and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor(emission rate divided by sum of air exchange rate and deposition constant) were calculated. Subsequently, the ventilation and source strength were estimated. During sampling period, geometric mean of natural ventilation was estimated to be 1.10$\pm$1.53 ACH, assuming a residential NO$_2$decay rate of 0.8 hr$^{-1}$ in summer. In winter, natural ventilation was 0.75$\pm$1.31 ACH. And mean source strengths in summer and winter were 14.8ppb/hr and 22.4ppb/hr, respectively. Although the method showed similar finding previous studies, the study did not measure ACH or the source strength of the house directly. As validation of natural ventilations, infiltrations were measured with $CO_2$tracer gas in 18 houses. Relationship between ventilation and infiltration was statistically correlated (Pearson r=0.63, p=0.02).

Simulation of Debris Flow Deposit in Mt. Umyeon

  • Won, Sangyeon;Kim, Gihong
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.507-516
    • /
    • 2015
  • Debris flow is a representative natural disaster in Korea and occurs frequently every year. Recently, it has caused considerable damage to property and considerable loss of life in both mountainous and urban regions. Therefore, It is necessary to estimate the scope of damage for a large area in order to predict the debris flow. A response model such as the random walk model(RWM) can be used as a useful tool instead of a physics-based numerical model. RWM is a probability model that simplifies both debris flows and sedimentation characteristics as a factor of slopes for a subjective site and represents a relatively simple calculation method compared to other debris flow behavior calculation models. Although RWM can be used to analyzing and predicting the scope of damage caused by a debris flow, input variables for terrain conditions are yet to be determined. In this study, optimal input variables were estimated using DEM generated from the Aerial Photograph and LiDAR data of Mt. Umyeon, Seoul, where a large-scale debris flow occurred in 2011. Further, the deposition volume resulting from the debris flow was predicted using the input variables for a specific area in which the deposition volume could not be calculated because of work restoration and the passage of time even though a debris flow occurred there. The accuracy of the model was verified by comparing the result of predicting the deposition volume in the debris flow with the result obtained from a debris flow behavior analysis model, Debris 2D.

주택에서 Box Model을 이용한 평균 환기율 및 이산화질소 발생량 추정 (Estimation of Mean Air Exchange Rate and Generation Rate of Nitrogen Dioxide Using Box Model in Residence)

  • 배현주;양원호;손부순;김대원
    • 한국환경과학회지
    • /
    • 제13권7호
    • /
    • pp.645-653
    • /
    • 2004
  • Indoor air quality is affected by source strength of pollutants, ventilation rate, decay rate, outdoor level, and so on. Although technologies measuring these factors exist directly, direct measurements of all factors are not always practical in most field studies. The purpose of this study was to develop an alternative method to estimate these factors by application of multiple measurements. For the total duration of 30 days, daily indoor and outdoor $NO_2$ concentrations were measured in 30 houses in Brisbane, Australia, and for 21 days in 40 houses in Seoul, Korea, respectively. Using a box model by mass balance and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor (emission rate divided by sum of air exchange rate and deposition constant) were calculated, Sub-sequently, the ventilation and source strength were estimated. In Brisbane, the penetration factors were $0.59\pm0.14$ and they were unaffected by the presence of a gas range. During sampling period, geometric mean of natural ventilation was estimated to be $l.l0\pm1.5l$ ACH, assuming a residential $NO_2$ decay rate of 0.8 hr^{-1}$ in Brisbane. In Seoul, natural ventilation was $1.15\pm1.73$ ACH with residential $NO_2$ decay rate of 0.94 hr^{-1}$ Source strength of $NO_2$ in the houses with gas range $(12.7\pm9.8$ ppb/hr) were significantly higher than those in houses with an electric range $(2.8\pm2,6$ ppb/hr) in Brisbane. In Seoul, source strength in the houses with gas range were $l6.8\pm8.2$ ppb/hr. Conclusively, indoor air quality using box model by mass balance was effectively characterized.

Dynamic characterization of 3D printed lightweight structures

  • Refat, Mohamed;Zappino, Enrico;Sanchez-Majano, Alberto Racionero;Pagani, Alfonso
    • Advances in aircraft and spacecraft science
    • /
    • 제9권4호
    • /
    • pp.301-318
    • /
    • 2022
  • This paper presents the free vibration analysis of 3D printed sandwich beams by using high-order theories based on the Carrera Unified Formulation (CUF). In particular, the component-wise (CW) approach is adopted to achieve a high fidelity model of the printed part. The present model has been used to build an accurate database for collecting first natural frequency of the beams, then predicting Young's modulus based on an inverse problem formulation. The database is built from a set of randomly generated material properties of various values of modulus of elasticity. The inverse problem then allows finding the elastic modulus of the input parameters starting from the information on the required set of the output achieved experimentally. The natural frequencies evaluated during the experimental test acquired using a Digital Image Correlation method have been compared with the results obtained by the means of CUF-CW model. The results obtained from the free-vibration analysis of the FDM beams, performed by higher-order one-dimensional models contained in CUF, are compared with ABAQUS results both first five natural frequency and degree of freedoms. The results have shown that the proposed 1D approach can provide 3D accuracy, in terms of free vibration analysis of FDM printed sandwich beams with a significant reduction in the computational costs.

Hydroalcoholic Extract of Scrophularia Striata Attenuates Hypertrophic Scar, Suppresses Collagen Synthesis, and Stimulates MMP2 and 9 Gene Expression in Rabbit Ear Model

  • Zarei, Hatam;Tamri, Pari;Asl, Sara Soleimani;Soleimani, Meysam;Moradkhani, Shirin
    • 대한약침학회지
    • /
    • 제25권3호
    • /
    • pp.258-267
    • /
    • 2022
  • Objectives: Hypertrophic scars (HSs) are caused by abnormal wound healing. To date, no standard treatment has been made available for HSs. Scrophularia striata has been reported to accelerate wound healing and has the potential to prevent HS formation. In this study, we investigated the anti-scarring effects of S. striata extract (SSE) in a rabbit ear model of scarring. Methods: In this study, New Zealand white rabbit (weight: 2.3-2.5 kg) were used. In the prevention phase of the study, three test groups received 5%, 10%, and 15% ointments of SSE in the Eucerin base, the fourth group received Eucerin, and the fifth group received no treatment. The samples were obtained on day 35 after wounding. In the treatment phase of the study, the test groups received an intralesional injection of SSE (5%, 10%, and 15%), the fourth group received an intralesional injection of triamcinolone, the fifth group received a solvent (injection vehicle), and the sixth group received no treatment. To evaluate the anti-scarring effects of SSE, the scar elevation index (SEI), epidermis thickness index (ETI), collagen deposition, and MMP2 and MMP9 gene expression were evaluated. Results: A significant reduction in SEI, ETI, and collagen deposition was noted in animals treated with SSE compared with the control groups. In addition, topical SSE stimulated MMP2 and MMP9 gene expression. Conclusion: The findings of this study demonstrate the potential for SSE in the prevention and treatment of HS. SSE could be prepared as an appropriate formulation to treat wounds and prevent abnormal scarring.

댐 건설이 하류하천 하상에 미치는 영향 분석 (Influence Analysis for Natural River Bed with Dam Construction)

  • 추태호;채수권
    • 한국습지학회지
    • /
    • 제14권4호
    • /
    • pp.715-723
    • /
    • 2012
  • 낙동강의 지류인 내성천의 회룡포는 섬 안의 섬으로 불리는 모래 백사장을 가지고 있는 매우 잘 알려진 관광명소이다. 그러나 상류 지역 댐의 건설이 계획되었다. 따라서 상류로 부터의 유사 유입이 차단되게 되었다. 이러한 상황에서 내성천의 지류로부터 유입되는 유사량 등을 통하여 회룡포의 모래 백사장에 미치는 영향을 1차원 및 2차원 모형을 사용하여 분석하였다. 유량-유사량은 댐의 유지유량과 지류에서 들어오는 유사량의 유역면적비에 의해서 산정된 값을 입력 자료로 활용 하였다. 1차원 모형은 HEC-6 모형을 사용하였고 2차원 모형은 SMS의 SED2D 모형을 사용하여 분석하였다. HEC-6 모형은 10년 전 하상에 데이터를 넣어 현재 하상과 가장 일치하는 공식인 Yang공식을 선정하여 현재 하상으로부터 20년 후를 모의하였다. SED-2D 모형은 현재 하상을 기준으로 20년 후를 모의하였고 두 모형 분석 결과 회룡포 구간에서는 동일한 양상이 나타나는 것으로 확인되었다.

유역침식 및 퇴적 잠재능 예측모델 개발 (Prediction of Watershed Erosion and Deposition Potentials)

  • 손광익
    • 한국방재학회 논문집
    • /
    • 제7권1호통권24호
    • /
    • pp.67-72
    • /
    • 2007
  • 본 연구에서는 토사에 대한 질량보존의 법칙을 이용하여 자연유역 내 토양의 침식 및 퇴적 잠재능을 산정할 수 있는 모델을 개발하였다. 이 프로그램은 각 셀 별 토사에 대한 질량보존의 법칙을 적용하여 GIS환경하에서 구동 가능하도록 구성되어있으며 셀 별 토사발생량은 RUSLE 공식을 이용하여 산정하였다. 토양의 침식 및 퇴적 잠재능은 토사의 유출량과 유입량의 차에 의해 각 셀이 침식되거나 퇴적된다는 질량보존의 법칙을 이용하여 산정하였다. 질량보존의 법칙을 적용하기 위한 셀 별 토사유출량은 토사발생량과 토사전달률을 곱하여 산정하였으며 이 토사 유출량이 흐름방향 알고리즘에 의해 결정되는 하류 셀의 토사유입량이 된다. 본 연구에서 개발된 모델을 이용하여 국내 소유역에 대해 적용하였으며 그 결과를 실측치와 비교함으로써 모델을 검증하였다.