• Title/Summary/Keyword: Natural convection heat transfer

Search Result 446, Processing Time 0.51 seconds

A study on simulation modeling of the underground space environment-focused on storage space for radioactive wastes (지하공간 환경예측 시뮬레이션 개발 연구-핵 폐기물 저장공간 중심으로)

  • 이창우
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.306-314
    • /
    • 1999
  • In underground spaces including nuclear waste repository, prediction of air quantity, temperature/humidity and pollutant concentration is utmost important for space construction and management during the normal state as well as for determining the measures in emergency cases such as underground fires. This study aims at developing a model for underground space environment which has capabilities to take into account the effects of autocompression for the natural ventilation head calculation, to find the optimal location and size of fans and regulators, to predict the temperature and humidity by calculating the convective heat transfer coefficient and the sensible and latent heat transfer rates, and to estimate the pollutant levels throughout the network. The temperature/humidity prediction model was applied to a military storage underground space and the relative differences of dry and wet temperatures were 1.5 ~ 2.9% and 0.6 ~ 6.1%, respectively. The convection-based pollutant transport model was applied to two different vehicle tunnels. Coefficients of turbulent diffusion due to the atmospheric turbulence were found to be 9.78 and 17.35$m^2$/s, but measurements of smoke and CO concentrations in a tunnel with high traffic density and under operation of ventilation equipment showed relative differences of 5.88 and 6.62% compared with estimates from the convection-based model. These findings indicate convection is the governing mechanism for pollutant diffusion in most of the tunnel-type spaces.

  • PDF

Thermal Analysis of a Spent Fuel Storage Cask under Normal and Off-Normal Conditions (사용후핵연료 저장용기의 정상 및 비정상조건에 대한 열해석)

  • Ju-Chan Lee;Kyung-Sik Bang;Ki-Seog Seo;Ho-Dong Kim;Byung-Il Choi;Heung-Young Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.13-22
    • /
    • 2004
  • This study presents the thermal analyses of a spent fuel dry storage cask under normal and off-normal conditions. The environmental temperature is assumed to be 15 $^{\circ}C$ under the normal condition. The off-normal condition has an environmental temperature of 38 $^{\circ}C$. An additional off-normal condition is considered as a partial blockage of the air inlet ducts. Two of the four air inlet ducts are assumed to be completely blocked. The significant thermal design feature of the storage cask is the air flow path used to remove the decay heat from the spent fuel. Natural circulation of the air inside the cask allows the concrete and fuel cladding temperatures to be maintained below the allowable values. The finite volume computational fluid dynamics code FLUENT was used for the thermal analysis. The maximum temperatures of the fuel rod and concrete overpack were lower than the allowable values under the normal and off-normal conditions.

  • PDF

Experimental Study on the Natural Convective Heat Transfer Characteristics of Ferrofluid for Concentric Annuli under Rotating Magnetic Field (회전수 및 자기장강도 변화에 따른 이중원관내 자성유체의 자연대류 열전달 특성에 관한 실험적 연구)

  • Kim, Hyung-Jin;Seo, Jae-Hyeong;Kim, Dae-Wan;Lee, Moo-Yeon;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.77-81
    • /
    • 2013
  • The objective of this study is experimentally to investigate natural convective heat transfer characteristics of the ferrofluid for a concentric annuli under rotating magnetic field with variations of the revolution and the magnetic field strength. The rotating magnetic field was provided by induction motor with 6 poles and 3 phases and the revolution and the magnetic field strength were controlled by an inverter driver and a voltage meter, respectively. Temperatures of the inner pipe and the outer pipe in the tested concentric annuli were maintained at $30^{\circ}C$ and $25^{\circ}C$, respectively, during the test and the direction of the rotating magnetic field was a counterclockwise. As a result, the natural convective heat transfer characteristics of the ferrofluid for a concentric annuli were increased with the rise of the revolution and magnetic field strength due to the increased heat dissipation between hot side and cold side of the concentric annuli.

Two-Dimensional Free Convection in a Rectangular Enclosure Composed of a Hot Wall and Partially Cold Side Wall (아래면이 고온이고 옆면의 일부가 저온인 4각형 밀폐공간에서의 2차원 자연대류에 관한 연구)

  • 이택식;고상근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.213-221
    • /
    • 1985
  • Two dimensional laminar natural convection in a rectangular enclousure composed of a hot bottom wall, a partially cold side wall and insulated walls except the above walls was studied by numerical analysis and also by esperiments. In the experiments, the temperature distributions in the enclosure and Nusselt number distribution along the hot and cold walls were obtained by the use of Mach-Zehnder interferometer. At first, numerical analysis with the boundary conditions of the experimental apparatus was performed and the comparison of the results of the numerical and the experimental results validated the numerical model good ennough. Heat transfer characteristics were investigated by applying the verified numerical model with the parameters, i.e. Grashof number, aspect ratio, position of cold plate and insulation condition. The results showed the optimal conditions of temperature distribution and the position of cold wall, and the characteristics of insulation materials.

A Structure-controlled Model for Hot Spring Exploration in Taiwan by Remote Sensing

  • Liu, Jin-King;Yu, Ming-Fang;Ueng, Shiun-Jenq
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.28-30
    • /
    • 2003
  • Hot Spring Law of Taiwan was passed in legislative assembly on 3 June 2003. Hot springs would become one of the most important natural resources for recreation purposes. Both public and private sectors will invest large amount of capital in this area in the near future. The value of remote sensing technology is to give a critical tool for observing the landscape to find out mega-scaled geological structures, which may not be able to be found by conventional approaches. The occurrences of the hot springs in Taiwan are mostly in metamorphic and sedimentary rocks , other than in volcanic environments. Local geothermal anomaly or heat of springs transfer by liquid convection other than conduction or radiation. The deeply -seated fractures of hard rocks are the conduit of the convection of hot water, which could be as deep as 3000 meters in a hypothetical model of Taiwan. Clues to find outcrops of hot spring can be obtained by a structure-controlled model deduced by geological lineaments observed by satellite images and stereoscopic interpretation of aerial photographs. A case study conducted in Eastern Taiwan will be demonstrated.

  • PDF

An investigation of laminar natural convection in a square partitioned enclosure (수평격판으로 분리된 정사각형 밀폐공간내의 층류 자연대류 해석)

  • Kim, J.S.;Chung, I.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.312-322
    • /
    • 1997
  • The natural convective flow in a two-dimensional square enclosure with horizontal partitions is investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and two identical partitions were positioned perpendicularly at the mid-height of the right and left walls, respectively. The governing equations are solved by using the finite element method with Galerkin method. Calculations are made for different partition lengths, partition conductivites, and Rayleigh numbers based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). An oscillatory motion of the natural convective flow is affected significantly by the variation of the gap width and Rayleigh number. When the gap width is comparatively short, the heat transfer rate is raised with the increase of the thermal conductivity of partitions. However, for sufficiently large gap widths at higher Rayleigh numbers, the average Nusselt numbers of the conductive partitions are smaller than those of the adiabatic partitions.

  • PDF

Numerical Investigation on Experiment for Passive Containment Cooling System (피동 원자로건물 냉각계통 실험에 관한 수치적 연구)

  • Ha, Hui Un;Suh, Jung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.96-104
    • /
    • 2020
  • The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.

Prediction of Heat-treatment Time of Black Pine Log Damaged by Pine Wilt Disease (소나무재선충병 피해를 받은 곰솔 원목의 열처리 소요시간 예측)

  • Han, Yeonjung;Seo, Yeon-Ok;Jung, Sung-Cheol;Eom, Chang-Deuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.370-380
    • /
    • 2016
  • The black pine logs damaged by pine wilt disease in Jeju-do were heat-treated to extend the utilization of domestic trees damaged by pine wilt disease. The heat-treatment of wood requires wood to be heated to $56^{\circ}C$ for 30 min at the core. The average moisture content and top-diameter of the black pine logs were ranged from 46% to 141% and from 180 mm to 500 mm, respectively. And the basic specific gravity and oven-dry specific gravity of the black pine logs were 0.47 and 0.52, respectively. The time required for heat-treatment at $105^{\circ}C$ temperature was ranged from 7.7 h to 44.2 h, depending on moisture content and top-diameter. The temperature distribution was used to predict the time required for heat-treatment of black pine log with various moisture contents and top-diameters using finite difference method. The thermal properties of wood including the thermal conductivity and specific heat in accordance with moisture content were calculated. Heat transfer coefficient for mixed convection in form of adding natural convection and forced convection was used for heat transfer analysis. The error between the measured and predicted values ranged from 3% to 45%. The predicted times required for heat-treatment of black pine log with 50% moisture content and 200 mm, 300 mm, and 400 mm top-diameter were 10.9 h, 18.3 h, and 27.0 h, respectively. If the initial moisture content of black pine log is 75%, heat treatment times of 13.6 h, 22.5 h, and 32.8 h were predicted in accordance with top-diameter. And if the initial moisture content of black pine log is 100%, heat treatment times of 16.2 h, 26.5 h, and 38.2 h were predicted in accordance with top-diameter. When the physical properties of logs damaged by pine wilt disease are presented, these results can be applicable to the heat-treatment of red pine and Korean pine logs as well.

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

ANALYSIS OF HEAT TRANSFER ON SPENT FUEL DRY CASK DURING SHORT-TERM OPERATIONS (사용후핵연료 건식 용기의 단기운영공정 열전달 평가)

  • Kim, H.;Lee, D.G.;Kang, G.U.;Cho, C.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.54-61
    • /
    • 2016
  • When spent fuel assemblies from the reactor of nuclear power plants(NPPs) are transported, the assemblies are exposed to short-term operations that can affect the peak cladding temperature of spent fuel assemblies. Therefore, it needs to perform the analysis of heat transfer on spent fuel dry cask during the operation. For 3 dimensional computational fluid dynamnics(CFD) simulation, it is proposed that the short-term operation is divided into three processes: Wet, dry, and vacuum drying condition. The three processes have different heat transfer mode and medium. Metal transportation cask, which is Korea Radioactive Waste Agency(KORAD)'s developing cask, is evaluated by the methods proposed in this work. During working hours, the boiling at wet process does not occur in the cask and the peak cladding temperatures of all processes remain below $400^{\circ}C$. The maximum peak cladding temperature is $173.8^{\circ}C$ at vacuum drying process and the temperature rise of dry, and vacuum drying process occurs steeply.