• Title/Summary/Keyword: Natural clay

Search Result 411, Processing Time 0.029 seconds

Plant Distributions and Physicochemical Characteristics of Topsoil on the Reclaimed Dredging Area (임해준설매립지 식물분포와 표층토양의 이화학적 특성)

  • Nam, Woong;Kwak, Young-Se;Jeong, In-Ho;Lee, Deok-Beom;Lee, Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.52-62
    • /
    • 2008
  • By analyzing specific plant distributions and physicochemical characteristics of topsoil in a reclaimed dredging area, baseline data was found of natural landscape planting sites, and developing dredged fill ground. The reclaimed dredging area is five different stands (1, 2, 3, 4 and 5) which were examined in this research. They are located from sea level to 15 meters in altitude and exhibited typical characteristics of the salt marsh in Gwangyang Bay. Species with high constancy in the vegetation on the reclaimed soil were classified into four stages. A total of 12, 15, 22, 27 and 35 different plant species were found and also increased in stands 1, 2, 3, 4 and 5, respectively. Moving from stand 1 to 5, halophytes decreased and non-halophytes increased. Desalination at each stage of the reclaimed dredging area was a driving force affecting the performance and distribution of halophytes and non-halophytes. Overall, 35 quadrats of soil were selected and analyzed for specific physicochemical characteristics of topsoil between O${\sim}$20cm. Results of the physicochemical analysis such as altitude, slope, vegetation and kind of reclaimed dredging soil, exhibited irregular increases or decreases. As survey areas moved from stand 1 to 4, desalination areas, soil acidity, electric conductions, content of salinity, available phosphorus, potassium, chlorine, calcium, and magnesium indicated decreasing patterns; however, total nitrogen, silt, and clay content increased. Cluster analysis and PCA by environmental data within the stands clearly showed five distinct vegetation patterns on the tested reclaimed area. These results indicate that the differences of performance and distribution of vegetation are due to the SAR in the reclaimed soil and related to the natural survival strategy at the given hostile habitat.

Holocene Paleosols of the Upo Wetland, Korea

  • Nahm, Wook-Hyun;Kim, Ju-Yong;Yang, Dong-Yoon;Hong, Sei-Sun;Lee, Jin-Young;Kim, Jin-Kwan
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.167-168
    • /
    • 2003
  • The Upo wetland, the largest natural wetland in Korea, is located in Changnyeong-gun, Gyeongsannam Province ($35^{\circ}33'$ N, $128^{\circ}25'$ E), and 70 km upstream from the Nakdong River estuary. Unlike most other Korean wetlands that have been destroyed under the name of economic development, the Upo wetland has been able to preserve its precious ecosystem throughout the years. Thanks to increased public awareness about natural wetlands and environmental conservation, the Korean Ministry of Environment designated the Upo wetland an 'Ecological Conservation Area' on July 26th, 1997. On March 2nd of the following year, the Upo wetland (8.54 $\textrm{km}^2$) was designated a 'Protected Wetland' in accordance with the international Ramsar Treaty. A 4.49m long (from 9.73 to 5.24 m in altitude) UP-1 core ($35^{\circ}33'05"N$, $128^{\circ}25'17"E$), recovered in the marginal part of the Upo wetland, is divided into eight buried paleosol units of different ages on the basis of the abundance of color mottles and vertical color variations (Aslan et al., 1998). Radiocarbon datings suggested that the paleosol profile represent the last 5700 years. The entire section of the core was more or less subjected to pedogenetic processes, and shows very weak to moderate soil profile development. These Holocene paleosols are therefore regarded as synsedimentary soils of deluvium (deposits formed by floods) origin (Sycheva et al., 2003). Unit 1 to 5 paleosols are generally silt-rich and exhibit moderate profile development. The boundaries between the units are somewhat distinguishable, but not so clear cut. This is due to variable repeated combination of accumulation, denudation and soil forming processes within various periods. Mottle textures gradually decrease in abundance with increasing clay content in Unit 6, which results in weak profile development. The lower boundary of Unit 6 lies around about 2000 yrBP, the beginning of Subatlantic in Korea (Kim et al., 2001). Abrupt sediment textural change is detected in Unit 7, which is interpreted to indicate the human activities on the Upo wetland. Unit 8 represents the recent soil forming processes. The preliminary results of this ongoing study imply the primary factor for pedogenetic processes is the water table fluctuations related to the sedimentary textures like grain size distributions, and the geomorphological stability of the Upo wetland.o wetland.

  • PDF

The Characteristics of Particle Size in Natural Mineral Pigment for Azurite Raw Material (남동광석(Azurite) 원료 천연 광물 안료의 입도분포 특징)

  • Go, In Hee;Jeong, Hye Young;Park, Ju Hyeon;Jeong, Sir Lin;Jo, A Hyeon
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.331-339
    • /
    • 2015
  • This study were conducted the particle-size analysis on 57 blue pigments to understand the step distribution characteristics of blue pigments made out of Azurite by using Malvern's Mastersizer 2000. As the result, most of the conventional blue pigments in Korea, Japan, and Chinese showed good granularity step separation except for few, and the smaller the particle, the more the Span value increased and the wider the granularity distribution range. On the basis of Friedman and Sanders's Grain size, most of the pigments were sand size to silt size. 72.2% of B-100 was clay size and 2.5% of A-14 was gravel size. Even the same components can differ by the grain size directly affecting the important property such as color formation, oil absorption, specific gravity, usability, etc. so the information about the granularity distribution would be used for basic data to deal with natural pigments.

Environmental Characteristics and Species Composition of Boehmeria platanifolia Habitat in South Korea (남한 개모시풀의 자생지 환경특성과 혼생식물종 분포)

  • Kim, Seong-Min;Shin, Dong-Il;Song, Hong-Seon;Yoon, Seong-Tak;Cho, Yong-Koo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.5
    • /
    • pp.371-375
    • /
    • 2008
  • This study was conducted to evaluate geographical distribution patterns of natural habitats, soil properties, and plant species grown with native Boehmeria platanifolia in South Korea. The relative density and coverage of Boehmeria platanifolia were 7.0% and 25.6% respectively. Most Boehmeria platanifolia were growing below 200 m of altitude, and they were rarely found at the higher altitude. Over 80% of Boehmeria platanifolia's habitats were found at below $20^{\circ}$ and their habitats were concentrated at the west and the north face slope rather than the south face slope. Nearly 90% of Boehmeria platanifolia were grown at little and middle light condition's area, and 69.1% of them were natively growing in humid soil in their natural habitats. Soil texture of their habitats were mostly clay loam and the soil pH was 6.2. The contents of soil organic matter was $24\;g\;kg^{?1}$ and $P_2O_5$ was $31\;mg\;kg^{?1}$. Plant species grown with native Boehmeria platanifolia were 60 family, 125 genus and 171 species. Clematis apiifolia showed the highest relative density and coverage among plant species grown with native Boehmeria platanifolia.

Hydrothermal Alteration Around the TA 26 Seamounts of the Tofua Volcanic Arc in Lau Basin, Tonga (통가국 라우분지 TA 26 해저산의 열수변질작용)

  • Cho, Hyen Goo;Kim, Young-Ho;Um, In Kwon;Choi, Hunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.233-247
    • /
    • 2012
  • We have researched the distribution and characteristics of seafloor hydrothermal deposits for the development of economic mineral deposits in the Lau Basin, Tonga since 2009. In this study, we interpreted hydrothermal alteration around TA 26 seamounts of the Tofua volcanic arc using X-ray diffraction analysis for bulk sample and preferred-oriented specimen of clay fraction. We used 2 core samples and several surface samples. Plagioclase and quartz are dominant mineral in the basement rock, whereas kaolin mineral and smectite are superior in marine surface sediments. Especially sulfate and sulfide minerals such as gypsum, barite, sphalerite, and pyrite are predominant in the vent sediments. When we compare the mineral composition between basement rock and sea surface sediments, argillic alteration zone composed of kaolin mineral and smectite could be produced by hydrothermal fluids. Based on the downcore variation of mineral assemblages, most portion of MC08H-06 core could be interpreted as argillic alteration zone composed of kaolin mineral and smectite except top 2 cm area. Various sulfate or sulfide minerals and argillic alteration zone suggest a high probability of massive sulfide deposits in the seafloor of the TA 26 seamount.

Gas Chromatographic Analysis on Residual Concentration and Half-life Time of Cyfluthrin in Potato and Soil (감자와 토양 중에서 Cyfluthrin의 잔류농도와 반감기에 대한 기체 크로마토그래피 분석)

  • Han, Seong Soo;Jeong, Seung Il;Chun, Hyun Ja;Hoang, Geun Chang;Kim, Il Kwang
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.722-730
    • /
    • 2000
  • The residual concentration and half-life time of synthetic pyrethroid insecticide cyfluthrin in potato and soil were investigated by gas chromatography (GC). The pesticide in potato was extracted with n-hexane, filtered and concentrated. The concentrated phase was transferred to the Sep-Pak silica gel column and purified with acetonitrile and acetone for the analysis by gas chromatography equipped with electron capture detector (GC-ECD). From the standard additional experiments with 0.01 and $0.1{\mu}g$, the recoveries were 85-87% and the detection limit was 0.005 ng. The soil sample was extracted with acetone and dichloromethane. The organic phase was concentrated and redissolved with n-hexane and analyzed with GC-ECD after cleaned with Sep-Pak column. From the standard additional experiments with 0.01 and 0.1 ng, the recoveries were 84-88% and the detection limit was 0.005ng. The half-life time of cyfluthrin in the silty clay was 25 days in the room laboratory and 0.6 days in the fieJd test whereas it was 38 days and 0.5 days for each in case of silty loam.

  • PDF

Experimental Study on Engineering Characteristic of the Waste Landfill Soil Admixed Linear (폐기물매립지 토사계 혼합 차수재의 공학적 특성에 대한 실험적 연구)

  • Chang, Yongchai;Kim, Jinchun;Jeong, Ogki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Leachates resulting from the waste landfill of waste can possibly cause the second pollution, such as the underground water and environmental pollution. Accordingly, Liner layer has been installed in the reclaimed land of waste to block and purify permeation water to and prevent this second pollution. The material used as Liner layer should have water resistance and be less than permeability coefficient of $1{\times}10^{-7}$ cm/sec. As it is very difficult to get this kind of natural clay with low permeability around the field, the suitable way to get the low permeable material is to use blend with good watertighness by mixing it with natural soil which is spread in the site. While this mixed soil, which can resist water, is commonly used in the site, namely, bentonite and MCG cementious mateiral mixed soil, which is widely used as Liner layer in the reclaimed land of waste, is recognized in Liner and durability. The study was performed to find the effect of additive of the bottom liner in the waste landfill. The aim of this paper is to explain of the field application examples as well as the data of experimental research with the engineering properties of Liner layer of the reclaimed land.

  • PDF

Effects of Application of Slow-Released Nitrogen Fertilizer Using Waste Paper Slurry on the Growth and Yield of Rice and Chemical Properties of Soil (폐지섬유를 이용한 완효성 요소비료 시용이 벼의 생육, 수량 및 토양에 미치는 영향)

  • Back, Jun-Ho;Kim, Bok-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.114-120
    • /
    • 2000
  • The aim of this study was to investigate the effects of slow-released nitrogen fertilizer(SRNF) on the growth and yield of rice. SRNF produced from wasted paper was applied to a clay loam paddy field comparing to urea fertilized field and only P-and K-fertilized field. Some agronomic components like as growth development and yield component were observed and physico-chemical properties of the soils were analyzed. Plant height and tiller numbers per hill showed higher in rice plant treated with SRNF than in one treated with urea at the early grow stage whereas they appeared to be all much the same at the end of growth stage. While the chlorophyll content in SRNF-treated rice shoot was higher than in urea-treated one, the photosynthetic activity in urea-treated rice shoot was slightly higher than in SRNF-treated rice. In harvested grain, the nitrogen content was higher than in SRNF treated rice than in urea treated rice, but in straws the content was less. At the harvesting stage, nitrogen uptake in grains was about 4% higher in SRNF-treated rice than in urea treated rice whereas in straws rather 20% lower. The N efficiency in SRNF treated rice was lower than in urea treated rice. In the soils treated with SRNF, pH, organic matter and phosphorus were higher than in the soils treated with urea. Total N content in SRNF treated soil was lower after experiment than in urea treated soil.

  • PDF

Study on Adsorption Characteristics of Arsenic on Magnetite (자철석의 비소에 대한 흡착특성 연구)

  • Jeong, Hyeon-Su;Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2008
  • Arsenic contamination in soil and groundwater has recently been one of the most serious environmental concerns. This arsenic contamination can be originated from natural or anthropogenic sources. It has been well known that arsenic behavior in geo-environmental is controlled by various oxides or hydroxides, such as those of iron, manganese, and aluminum, and clay minerals. Among those, particularly, iron (oxy)hydroxides are the most effective scavengers for arsenic. For this reason, this study characterized arsenic adsorption of magnetite which is a kind of iron oxide in nature. The physicochemcial features of the magnetite were investigated to evaluate adsorption of arsenite [As(III)] and arsenate [As(V)] onto magnetite. In addition to experiments on adsorption equilibria, kinetic experiments were also conducted. The point of zero charge (PZC) and specific surface area of the laboratory-synthesized magnetite used as an arsenic adsorbent were measured 6.56 and $16.6\;g/m^2$, which values seem to be relatively smaller than those of the other iron (oxy)hydroxides. From the results of equilibria experiments, arsenite was much more adsorbed onto magnetite than arsenate, indicating the affinity of arsenite on magnetite is larger than arsenate. Arsenite and arsenate showed adsorption maxima at pHs 7 and 2, respectively. In particular, adsorption of arsenate decreased with increase in pH as a result of electrical repulsion caused by anionic arsenate and negatively-charged surface of magnetite. These results indicate that the surface charge of magnetite and the chemical speciation of arsenic should be considered as the most crucial factors in controlling arsenic. The results of kinetic experiments show that arsenate was adsorbed more quickly than arsenite and adsorption of arsenic was investigated to be mostly completed within the duration of 4 hours, regardless of chemical speciation of arsenic. When the results of kinetic experiments were fitted to a variety of kinetic models proposed so far, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto magnetite.

Searching for Rotationable Vegetables for Paratylenchus projectus in Lettuce Greenhouse (해바라기침선충(Paratylenchus projectus) 피해 경감을 위한 윤작작물 탐색)

  • Kwon, Giyoon;Seo, Jongmin;Park, Sohee;Kang, Heonil;Park, Namsook;Choi, Insoo
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.272-278
    • /
    • 2020
  • The severe lettuce damage caused by Paratylenchus projectus was first reported in 2019 in Korea. To find high-value rotation crops for the control of P. projectus, nine vegetables, Brassica juncea (leaf mustard), B. rapa subsp. nipposinica (kyona), B. oleracea var. italica (broccoli), B. rapa subsp. chinensis (bok choy), B. oleracea var. viridis (kale), B. oleracea var. gongylodes (kohlrabi), Cichorium endivia (endive), C. intybus (chicory), Ipomoea aquatica (morning glory) were planted in d-10-cm clay pots in greenhouse. The growth of vegetables was compared between inoculated with 3,000 P. projectus per 100 ㎤ of soil and non-inoculated. Treatments were replicated 10 times. After 100 days, the reduction of fresh top weight was 30.4% in C. intybus, 35.1% in I. aquatica, 36.9% in B. oleracea var. acephala, 40.5% in C. endivia, 42.1% in B. rapa, 47.5% in B. rapa subsp. nipposinica, 50.4% in B. oleracea var. gonglodes, 56.3% in B. oleracea var. italica, and 66.0% in B. juncea. Nematode multiplication rates (Pf/Pi) were lower in I. aquatica (0.64) and C. endivia (1.1), but higher in B. oleracea var. gongylodes (2.54). Considering these results, I. aquatica is suitable for the rotation crop with lettuce until better rotation crops developed.